a2 United States Patent

US009461996B2

10) Patent No.: US 9,461,996 B2

Hayton et al. 45) Date of Patent: Oct. 4, 2016
(54) SYSTEMS AND METHODS FOR PROVIING USPC e 726/8
A SINGLE CLICK ACCESS TO ENTERPRISE, See application file for complete search history.
SAAS AND CLOUD HOSTED APPLICATION
(56) References Cited
(75) Inventors: Richard Hayton, Cambridge (GB);
Ajay Soni, San Jose, CA (US); U.S. PATENT DOCUMENTS
Abhishek Chauhan, Saratoga, CA 7,503,065 B1* 3/2000 Packingham et al. 726/12
(US): Rajiv Sinha, San Jose, CA (US); 7,886,050 B2* 2/2011 Rajaetal. ..o 709/224
Minoo Gupta, Los Gatos, CA (US) (Continued)
(73) Assignee: CITRIX SYSTEMS, INC., Fort OTHER PUBLICATIONS
Lauderdale, FL (US)
Koufi, Vassiliki, and George Vassilacopoulos. “HDGPortal: A Grid
(*) Notice: Subject to any disclaimer, the term of this portal application for pervasive access to process-based healthcare
patent is extended or adjusted under 35 systems.” Pervasive Computing Technologies for Healthcare, 2008.
U.S.C. 154(b) by 661 days. PervasiveHealth 2008. Second International Conference on. IEEE,
2008. pp. 121-126.*
(21) Appl. No.: 13/102,937 (Continued)
(22) Filed: May 6, 2011 Primary Examiner — Kari Schmidt
(74) Attorney, Agent, or Firm — Foley & Lardner LLP;
(65) Prior Publication Data Christopher J. McKenna; Paul M. H. Pua
US 2011/0277027 Al Nov. 10, 2011
(57) ABSTRACT
Related U.S. Application Data The present disclosure is directed to methods and systems of
(60) Provisional application No. 61/332,433, filed on May providing a user-selectable list of disparately hosted appli-
7, 2010. cations. A device intermediary to a client and one or more
servers may receive a user request to access a list of
(51) Int. CL applications published to the user. The device may commu-
HO4L 29/06 (2006.01) nicate to the client the list of published applications avail-
GOG6F 21/00 (2013.01) able to the user, the list comprising graphical icons corre-
(Continued) sponding to disparately hosted applications, at least one
graphical icon corresponding to a third-party hosted appli-
(52) US.CL cation of the disparately hosted applications, the third party
CPC HO4L 63/0884 (2013.01); GOGF 21/00 hosted application served by a remote third-party server. The
(2013.01); GOGF 21/31 (2013.01); GOGF device may receive a selection from the user of the at least
2141 (2013.01); GOGF 21/554 (2013.01); one graphical icon. The device may communicate, from the
HO4L 63/0815 (2013.01) remote third party server to the client of the user, execution
(58) Field of Classification Search of the third party hosted application responsive to the

CPC . HO4L 63/0884; HOA4L 63/0815; HO4L 9/32;
GOG6F 21/00; GO6F 21/31; GOGF 21/41;
GOGF 21/554

Web interface 2400°
2305A 2305B 2305N
Nt/

Application icons

Nt/

Interface 2400
2305A 23058 2305N

Application icons

Client 102

selection by the user.

19 Claims, 51 Drawing Sheets

Disparately Hosted Applications

Enterprise Server 106A

Disparate Application
2305A

Third Party Server 106B

Cloud Computing

Service 2430

Enterprise Disparate
Application 23058

Network
104"

Application 2305N

Client Agent 120
Interface 2400 Intermediary 200
Application 2305A Packst Engine 548 Network
T —C 104
H Application Configuration
Application 2305 N 2410
User Credentials
Web Interface 2400° 2415
Application 2305A

Application
Connector 2420

Third Party Server 106N

Third Party Disparate
Application 2305N

US 9,461,996 B2

Page 2
(51) Int.CL 2010/0299366 Al* 11/2010 Stienhans et al. 707/803
GO6F 21731 (2013.01) 2010/0332617 Al* 12/2010 Goodwin et al. .. 709/219
2011/0138047 Al1* 6/2011 Brown et al. 709/226
GOGF 21/41 (2013.01) 2011/0138049 Al1* 6/2011 Dawson et al. 709/226
GO6F 21/55 (2013.01) 2011/0153721 Al* 6/2011 Agarwal ef al. ..oovvoen... 709/203
2011/0154464 A1* 6/2011 Agarwal et al. 726/8
(56) References Cited 2011/0219434 A1* 9/2011 Betz et al. 726/5
2011/0277026 A1* 11/2011 Agarwal et al. 726/8
U.S. PATENT DOCUMENTS
OTHER PUBLICATIONS
8,281,378 B2* 10/2012 Anderson 726/8 _ _ _
8,924,559 B2* 12/2014 Brown et al. 709/226 Lampropoulos, Konstantinos, et al. “Introducing a cross federation
8,984,505 B2* 3/2015 Fer_r_is 718/1 identity solution for converged network environments.” Principles,
2008/0082538 Al* 4/2008 Meijer et al. - 707/9 Systems and Applications of IP Telecommunications. ACM, 2010.
2009/0187654 Al* 7/2009 Raja et al. ... 709/224 N
2009/0307351 AL* 12/2009 Raja et al. .ocooooooorecn... 709/224 bp- 1-11.
2010/0042720 Al* 2/2010 Stienhans et al. 709/226 . .
2010/0121975 Al* 5/2010 Sinha et al.cco........ 709/231 * cited by examiner

US 9,461,996 B2

Sheet 1 of 51

Oct. 4, 2016

U.S. Patent

ugpj 19AI98

o oo o

oo on

q901 J13AIRg

o ooa
—

o oo

egQ| JoAI9g

0o 0ooan

U o oo

8¢

J0lL
}IOM)ON

VI ‘DOI4

00z
asuelddy

1=

¥0L
MIOMIBN

uzol uslio

qzol uald

eZ0L LD

—+4

US 9,461,996 B2

ugQl 18AlRg . uzol wseip
qa1 ‘DIA
P
o oo .X/\\
o oo n —— .
— o))

q9o} Jenlsg

Sheet 2 of 51

002
aoueljddy

00
aouelddy

Oct. 4, 2016

U.S. Patent

egQ| loriag
ezol wslD
8¢

US 9,461,996 B2

Sheet 3 of 51

Oct. 4, 2016

U.S. Patent

ugQ| JoAI9g

21 "DIA

0
0
0
(s01n0p UonEZILIRAO)
qg0l 19niag
NVYM 002
§ .80¢ ®ocm..__aa< ®ocmzaa<
o ooao [
B9(| 1oAI08

(s0100p UONEZIWRAQ)

G0z eouelddy

uggl sl

RO
LAY
Vy‘\\\ N\
3’

N/

BZ0l ualD

=

US 9,461,996 B2

Sheet 4 of 51

Oct. 4, 2016

U.S. Patent

drl ‘OId

V90l 189Aleg
Q6| 99IAI9S
Buriojuow
90| JoAl0g soueuwoad
161
wsbe Bupoyuow
aoueuLloyad
g6l
auibug Asyjod J0L I
— D WIomiaN
061 waisks
FSEVN gl
uoneolddy
3l eled
uoneoyddy

20l uaid
0zl
002 Jueby uslD
aouelddy
- 1 -] .QO'—‘ xxxxxxxxxxxxxxxxxxx
e | YIOMIBN 3l eleq
uoneoyddy

} JuswuoliAug
Bunyndwo)

U.S. Patent Oct. 4, 2016 Sheet 5 of 51 US 9,461,996 B2

128
T
P g
0Ss
Software
101 122 Client {120
s - Agent H
CPU Main
Memory | | Storage
<€ { >
123- I
A\ Display
110 device(s) Installation Network
CTRL \\ Device Interface
12~ 127 e _116 118
Keyboard ng”t.i”g
evice

FIG. IE

U.S. Patent Oct. 4, 2016 Sheet 6 of 51 US 9,461,996 B2

101
140
Main -
Processor Cache
/“122
/O | /O |Memory Main
Port |Port P\Ort Memory /__1 30b
o
—103 /O
Device
Bridge 170
/150
L 130a
1/0
Device

FIG. IF

U.S. Patent Oct. 4, 2016 Sheet 7 of 51 US 9,461,996 B2

101
/
PPU
P1 P2
P3 P(N)
FIG. 1G
101
K
CPU
107
GPU

FIG. IH

US 9,461,996 B2

Sheet 8 of 51

Oct. 4, 2016

U.S. Patent

Va ODIA
\l\oom
— — == — . ooz !
99¢ suod ¥9¢ C9¢C c9¢ | josseoolq | 202
FIOMION Alowa lossao0.id lossao0.d { LopdAioug ailempien
192 ¥oe)s
NIINNEIN]
/ vee
— auibuz uondAioug
E€v2C 1/ynq ve sy
0%z auibuz 1930ed pajeibalu]
L-T Joke paeds-ybiH — 02
0€e aoedg
— [ouiay| joulay
— p— Jabeuey
8¢z uoissaidwon > @mm auibu3 \ ayoe)
[090304d-}INIA dlled
L Z S92IAI9S uowoaeq WalsAg 2oz
— aosedg
9l¢ — i] lasn
swelboid 1474 [AY4 0Lc
Buuoluop YiesH SadINSS ([PUS {10 NS

US 9,461,996 B2

Sheet 9 of 51

Oct. 4, 2016

U.S. Patent

ugQ} JonI0S

UQZZ 90IABS

4901 J9Al3g

4042 ®dIneS

B90} 910G

B0/ 208G

J0l
NIoMIeN

qa¢ ‘D14

002 2ouelddy

161
wabe Bulioluow

06C M4 ddy

Q87 uoneI9|900Y

98Z SNd

8¢ Buyoums

282 dl 1euequ)

08Z NdA 1SS

UG/C V 1oniogA

BG/¢ Y JoniagA

01
IOMISN

uzol wsid

uozl
oby i

qcol w3l

qozt
Jusby jusiiD

BZ01 uslid

B0z1
Weby jusilD

U.S. Patent Oct. 4, 2016 Sheet 10 of 51 US 9,461,996 B2

Client 102
\ user mode 303
| 1st Program :
| App 1 App 2 322 :
| App N |
i \ 4 v v E
; 310a |
| monitoring E
i agent/script 197 E
| Network
! Stack Streaming Client !
i 310 306 E
:Lh._u.. < > Collection Agent —
i 304 i
; AP!/ data !
! structure 325 Acceleration i
| Program 302 i
E interceptor i
i 350 !
; Client Agent 120 5
E 310b ;
i Kemnel mode 302

FIG. 3

U.S. Patent Oct. 4, 2016 Sheet 11 of 51 US 9,461,996 B2

device 100 j

virtualized environment 400

VIRTUALIZATION LAYER
Virtual Machine 406a Virtual Machine 406b Virtual Machine 406¢

Control

Operating Guest Guest

System Operating Operating

405 System System
Tools 410a 410b

Stack 404
----------- 2 | R R T el B
i Virtual i | Virtual | [| ! Vitual ! Virtual (| 1 Virtual) Virtual
1 Disk 11cPU |fliDisk !'cpu || iDisk 1CPU
1442 1 1432a]! 4420 !la3pp | i442c 11432

1\ F A
HYPERVISOR LAYER
v ‘L A
Hypervisor 401
............................ IO JE T SRR
HARDWARE LAYER l
Physical Disk(s) 428 Physical CPU(s) 421

FIG. 44

U.S. Patent Oct. 4, 2016 Sheet 12 of 51 US 9,461,996 B2

Computing Device 100a Computing Device 100b
Virtual Machine Virtual Virtual Machine Virtual
4063 Machine 406b 406¢ Machine 406d
Control OS Guest Control OS Guest
405a Operating 405b Operating
System < > System
Management 410a Management 410b
component component
404a I 404b I
e ¥ N S
| Vitual | | Virtual
t 1 Resources : t ! Resources
1
Hypervisor | i1 4322 4423 | Hypervisor |,v]! 4320442
401a 401b
Physical Resources Physical Resources
421a, 428a 421b, 428b

Computing Device 100c

Virtual Machine 450e Virtual Machine
406f
Guest Operating System 410c
___________ 1________..___..-_! Control OS
: Virtual Resources 432c, 442¢ ! 405¢
'y Management

3 component
- 404a
Hypervisor 401

FIG. 4B

U.S. Patent

Oct. 4, 2016

Sheet 13 of 51

virtualized application delivery controller 450

vServer A 275a

vServer A 275n

SSL VPN 280

Intranet IP 282

Switching 284

DNS 286

Acceleration 288

App FW 290

monitoring agent
197

vServer A 275a

vServer A 275n

SSL VPN 280

Intranet IP 282

Switching 284

DNS 286

Acceleration 288

App FW 290

monitoring agent
197

virtualized environment 400

computing device 100

FIG. 4C

US 9,461,996 B2

U.S. Patent Oct. 4, 2016 Sheet 14 of 51 US 9,461,996 B2
................. Functional
510C: Parallelism
500
i510A e gy /
NW 5 lOBg TCP : 515
1/0 SSL i P e
Core 1 Core 2 Core 3 Core4 | Core 5 Core 6 | Core 7 Core N
[« < -]
505A 505B 505C 505D 5051 S05F 505G 505N
Data
Parallelism 540
515 VIP 1 Jeoreneeniennnnd VIP3
s 275C NIC1 \
275A \71P2 Nl(z
275B
Core 1 Core2 | Core3 | Cored | Core5 | Core6 | Core?7 Core N
000
505A 505B 505C 505D S05E 505F 505G 505N
Flow-Based Data
Parallelism _ 520
R 51585 515(‘ L) I R Rn I ,
5154 : 5isp; S1OF 515G f 515N
515
Corel | Core2 | Core3 | Cored | Core5 | Core6 | Core7 Core N
200
505A 505B 505C 505D 505E 505F 505G 505N

FIG. 54

U.S. Patent Oct. 4, 2016 Sheet 15 of 51 US 9,461,996 B2

545

Memory Bus 556
A A
Y Y
Core 1 Core 2 Core 3 Core 4 Core 5 Core 6 Core 7 Core N
543A 548B 548C 548D 548E 548F 548G 548N
Packet Packet Packet Packet Packet Packet Packet Pac!(ei
Engine Engine Engine Engine Engine Engine Engine Engine
A B c D E F G N
I——— |"_1 |"'_1 |"'—'I '__1 |"'_'I |""—'I |__'I
| Flow | Flow I | Flow | | Flow I } Flow | | Flow I | Flow I ooo | Flow I
| Dist. | Dist. I || Dist. | || Dist. | | Dist. I || Dist. | | Dist. | j Dist. |
LS80 1)y S50y [5507y |y S50y [y S50y |y S50 [y 850 L300
505A 5058 505C 505D 505E 505F 505G
A
\ 4
RSS Module 560" Flow Distributor
¢ 552
i |
| 550" | 560
Flow NIC RSS Module
| Distributor

FIG. 5B

US 9,461,996 B2

Sheet 16 of 51

Oct. 4, 2016

U.S. Patent

IS DIA
[
| 0.9 |
08S 8yoeQ [eqo|D “

NG0S o o 9G60S 4605 3508 asos 0608 asos | VvG0S
| (8109 j053U0D) I
N8i0D /810D 99109 GoI10D 910D £810) zoei0n) Lalo) “
I |
_ aue|d “
“ |o3U0D _
A to———- -

G/S

US 9,461,996 B2

Sheet 17 of 51

Oct. 4, 2016

U.S. Patent

V9 'Ol

029 Jonlag ayoen

NIOM]SN

90} Jonles

NIOM)BN

019 Adljod

G609 uoneinbyuon

009 Jo108l1pay ayoen

816 auibug 19084

201 3o

002 @oueljddy / 00z Atelpawiaju

U.S. Patent Oct. 4, 2016 Sheet 18 of 51 US 9,461,996 B2

an intermediary device receiving a client request identifying a
client IP address as a source IP address, the client request
intended for a destination server

v

Step 610 —, the intermediary determining that the client request is for
content that may be cached

v

the intermediary transmitting to a cache server the client
Step 615 —, request as a cache request comprising the client IP address
in the header of the cache request

v

the intermediary receiving from the cache server, in response
~a to a cache miss, a returned cache request comprising the
client IP address in the header of the returned cache request

v

the intermediary obtaining the client IP address from the
header of the returned cache request responsive to a policy

Step 605 —,

Step 620

Step 625

v

Step 630 the intermediary transmitting to the destination server the
= | returned cache request as a request that identifies the client
IP address as the source IP address

FIG. 6B

U.S. Patent Oct. 4, 2016 Sheet 19 of 51 US 9,461,996 B2

Request 700 Request 700

Source IP: 705A Source IP: 705A
Destination IP: | 705B Destination |P: | 705B

\ Intermediary 200 f
Cache Redirector 600
1 4
Intermediary IP
Address 705C 3
Client 102 Server 106
Intermediary MAC
Client IP Address 710C Server IP
Address 705A Address 705B
Intermediary VLAN
Address 715C
A
Request 700 Request 700
Source |P: 705A 2 3 Source IP: T05A
Destination |IP: | 705B Destination |P: | 705B
Cache S 620
MAC Address: | 710D ache Senver 92 MAC Address: | 710C
Cache IP Add
VLAN Address:| 715D A VLAN Address: 715C
Cache MAC
Address 710D
Cache VLAN
Address 715D

FIG. 7A

U.S. Patent Oct. 4, 2016 Sheet 20 of 51 US 9,461,996 B2

Step 705 an intermediary device receiving a client request identifying a
client IP address as a source IP address and a server IP
address as a destination IP address

v

-~ the intermediary determining that the client request is for
content that may be cached

v

the intermediary transmitting to a cache server the client
request that comprises a destination MAC address changed
to identify a MAC address of the cache server

v

the intermediary receiving from the cache server a returned

~, | client request comprising the client IP address as the source

[P address and the server |P address as the destination IP
address

v

Step 725 the intermediary determining that the returned client request
~ | is from the cache server based on a data link layer property
of a connection between the cache server and the
intermediary

v

the intermediary transmitting to a server identified by the

™ | server IP address the returned client request identifying the

client IP address as the source IP address and the server IP
address as the destination IP address

Step 710

Step 715

Step 720

Step 730

FIG. 7B

US 9,461,996 B2

Sheet 21 of 51

Oct. 4, 2016

U.S. Patent

V8 'Old

\C_NEOQ uoljednuasyliny m_@C_W/

SS200ypPNo|D

/ [BUOd GO

o .mqam gem mmto__m“cmb:m ‘poISOH pnoj) ‘sees ssoloe c_mEou.co_Hm_o_EmE:m albuis e sa1eaI10 WoISAS SS900y pno|y

US 9,461,996 B2

Sheet 22 of 51

Oct. 4, 2016

U.S. Patent

S

et

sase) asM 9|
\

dw

US 9,461,996 B2

Sheet 23 of 51

Oct. 4, 2016

U.S. Patent

Qozmwm\mmxx uay

00¢ ‘00¢

08 'Oid

sddy ssudiaiug
pue Seeg
SS0.I0Y 10} SS90y
19s() sso|wess

US 9,461,996 B2

Sheet 24 of 51

Oct. 4, 2016

U.S. Patent

as "oid

suonediddy

Seeg +
gep esudisiug Jo)

OSS psiepljosuo)
gepn asudisiug

002 ‘002

"uoneoo Auy Ul
‘1o8 Auy
‘uoneolddy Auy

. sees
sddy geeg pue asudisiugy
10} DAV 8y}

ojul Juawabeue
Aaijod 0SS PeOO

US 9,461,996 B2

Sheet 25 of 51

Oct. 4, 2016

U.S. Patent

aaM
asudiaug

SS800yPNo|D

Jajuaoele(] asudiaiug

pno|o
8] 0] SPEOYIOAA JO
JUSWISAOJ\ 8)0Woid

pno|D See|

Japinold
BunsoH
PNoID

US 9,461,996 B2

Sheet 26 of 51

Oct. 4, 2016

U.S. Patent

48 "Old

vvYv
astLidiaug

geM
asudisiug

3

VvV
asudiaiug

Jajuaoeieq asldisiug

abpugpno|d

pPnojD ay}
0] SPEOPHOAN
JO JUSWSAON

pNo|D See|

\AvA+
asudiaug

Japinoid
BunsoH
PNoIO

US 9,461,996 B2

Sheet 27 of 51

Oct. 4, 2016

U.S. Patent

V6 "Old

suUonN|oS yyYy Buiisixa 0} aAldnisip-uou si pue sajeibaju] «

suoljeoldde pnojo
pue Seeg SNoJawnu JO UoiieZiIoYINe pue uoneosnuayine ‘uoiiuboosal ojewoiny e

uoleoo| Aue wouj suonesiidde pnojo pue asudialue ‘Seeg 10} OSS Jualedsuel] e

SS922ypPNo|H

US 9,461,996 B2

Sheet 28 of 51

Oct. 4, 2016

U.S. Patent

g6 "Olid

0SS 1o} uonealjdde yore 10} SI0}0BULOYD) SBES
suoneoldde gx/vX 10 ‘gop ‘Sees o1 uiboj aewoine sajqeus pue papnjoul st (OSS) uQ-ubig ajbuig

uoin|os ayj jo sued jeuonoun; sie juswoebeuey piomssed pue BUILOISINOI] 19S[]

US 9,461,996 B2

Sheet 29 of 51

Oct. 4, 2016

U.S. Patent

55800y sddy/1esn pajjojuod Ao1j0d
suoneoidde o3 wiboj ony

0SS {0} aoeliay|
oedg ddy

06 'Old

US 9,461,996 B2

Sheet 30 of 51

Oct. 4, 2016

U.S. Patent

VoL

Old

sJawnsuo)
sees
aliqow
‘07 9OM

als-gom ybnouyy
SOOIAI9S goM 0] SS800B
puE JO UOHEPI|OSUOD

pasn spq| Jo sso|piebal
sdde |je sjooud ainjng .

suoneoydde

g8m lamau 1o} JAVS
apiaold pue JspulNalIS
uoddns o1 soueldde
pu02as e pue‘suonduny
ouiny e 8jepljosuod

0} X0Q SkeeS VvV yim
uonnjos aoueldde omyy -

US 9,461,996 B2

Sheet 31 of 51

Oct. 4, 2016

U.S. Patent

JouIaU] <

.Pnojy sjeAld

80} "Old

00¢

Seeg pue dopjsaquax/ddeN3X /m uojeoyiun 0SS

461,996 B2

b

US 9

Sheet 32 of 51

,2016

4

Oct

U.S. Patent

Rl peleiope

uoneoddy |

| suoen
Pl
. pipeieiepay

PajsOH

301 'Old

s
1eAld

)
1enlid

sddy pe)soH See| Joj 82IAI8S OSS Pno|D

US 9,461,996 B2

Sheet 33 of 51

Oct. 4, 2016

U.S. Patent

aol 'oid

SS800YPNOJT $S800YPNO|D)

sddy jeusaiu} 0] 0SS asudisiug

M + SS220Y dj0Way)
1ouIBY|

US 9,461,996 B2

Sheet 34 of 51

Oct. 4, 2016

U.S. Patent

L1 "Old

dorn

asudisjug

$S800yPNOID

Jajuaoele ssudisiug

Bunsing

PNo[O

lapinoid
BunsoH
PNoID

US 9,461,996 B2

Sheet 35 of 51

Oct. 4, 2016

U.S. Patent

vZ 1 8inbi4

="

zoz "

1] 2 %

R + 74

]

i 1112

Y02 - sowpau) yustwsBeren ey

2403
apueuin

i

02 _—f asepiegus uotabeueus tiieg |

aoeiioy; Juswabeuew e -

A

Lo

] wmsissy |

-

004 w B

BOBHBIUE BpIE - RIOMJSN

\

{9z WesAsgng 20 (42 weshsgng
/ IESMOIE ¥ peoyoguiieN

; wesbold
g —’

T —

[T— nwm.v.u@ﬂ

;]

w80 E

SRS P18 - HIoMIEN

| .:W@.N

0}
oM

U.S. Patent Oct. 4, 2016 Sheet 36 of 51 US 9,461,996 B2

—

o Web Publishing Tool

1173

150" ..

Content Server 108 \
5 1 | | | Publishing L. el
v | BT Server Plug-in | Persistent |
f Mass
Btorage
1225

1165

Application |)
Client i

Figure 12B

U.S. Patent Oct. 4, 2016 Sheet 37 of 51 US 9,461,996 B2

1300 . 1302 1304 1306

A\

Workstatons |7 CAD Teminals [Admin Teminals
R - o »g1266 : T 1272
HlemA| HCADA{ HAdminA
B 1262 | == :
s 1268 1| 1274

1264 | 1282 1276
4 (,,-4"“

teme | Yol Yndnine

L=

FIG. 13A

1308 1310 1312

TG H Engreens

§
=
il
L 2%
&
Fa

o181 e 1320 I 71328

.l

e 4346 _ B ;
_ ! /’l . .5 - - ‘f/” 1322 | - /— 1328

1318 1324

U.S. Patent Oct. 4, 2016 Sheet 38 of 51 US 9,461,996 B2

1400
~ 2 T4 1306
Enroliment Rales ;] [] /
Resourcd Group | i
g g -* Workstations |CAD TermiAdmin Terminals
10— S XX X
- S Engineers X X
1312 TriAssts | — X

FIG. 14

U.S. Patent

Oct. 4, 2016

Sheet 39 of 51

US 9,461,996 B2

1500 ; ,
1502 " ™ Specify enrollment
limitation rule
¥
1504 ~ Reveive requast
1o enroll computer
‘ Y.
1506 = > Verify user identity
. Liser peroitted
S~
1508 <io ervoll by the specifie
nroliment culk?
1510 7 | Determine location of user
, 7 User at ‘ o
1512 7 Cphysically-attached -

console?
e

- Enroll Computer 1514

FIG. 15

”No

b4

Deny request

<1516

US 9,461,996 B2

Sheet 40 of 51

Oct. 4, 2016

U.S. Patent

91 "Old

0091

U.S. Patent Oct. 4, 2016 Sheet 41 of 51 US 9,461,996 B2

1702 to first computer from
seomnd computer

......... !

s | Dhterming il wser of second |
1704 i computer has enrolied
i the first computer,

™,

, Bo
1706 = / \ | Deny acoess to |,

a :
N Ervolled? p A first computer 1710

e} Cirant accessto |
1708 first vomputer

FIG. 17

US 9,461,996 B2

Sheet 42 of 51

Oct. 4, 2016

U.S. Patent

901
0LLL oduI0}g HOINSDS 1951 HUOISIACL]
P T,
091 95/1
N }
u_mﬁﬂmﬁ asaquIBg] 29ll
SMO0Y Le 3} o
Wi SR] asequie(]
’ suonpyddy
e ey

wwh—\ k\

Joealan

uoneagddy

Bieuey axes Laaq ddy

F A

3Ll

0
Jankg v

V8l "Old

FOI

IDAJAS

SFIOMIAN

v

01

9.1
WSy VO

14 T2

| 20BHSI] 21008

Araanaq ddy

rAFA"
21015
wopeoyddy
pajeIsy

e
e SO

JanduwioTy Uy

US 9,461,996 B2

Sheet 43 of 51

Oct. 4, 2016

U.S. Patent

951
DLLL AERI0IS 7 UOISSIE I35 JRUOSIANL]
0LV SHRI01G | BOISSIT IS [BUDISIADL]
}
2941
A —— I\IIIIII}
0944 26/.1 SEBGHIRT
supgeaddy
DEBARIEC] aseqeing]
Spmeaey P cofepang
w3 e | >
 parsrama, parrrra——
811
7 e |1 sseg
90041 [B PR
9.1 A
SO RG] VI R
uoyroydidy * £350)
F Y
h 4 y
] POLIEID
i DTS W
FruRy Ang fpana ddy AR

IOAIRG

g8l "OId

3!
JosIaN

-

1

RV VIV TR VIV T

viLL

98LL
(Ll Rl

pul

FEL1
SOBLINU] SIS

Arangjagqq ddy

pSLl
SORTINUT H101E
Krangpacy ddy

AT
i
i
\M\ W) YOI
|
i
i
i
]
]

i
{
YT
ANg !
uoiyeayddy !
pajelsuy i
{

i

{

i

i

i

<

AONG
noyearddy

(SRR VIVV VIV N TUIY S VUV VUV VOV IVU R VIV VI

Jomchuin;y 1w

U.S. Patent Oct. 4, 2016 Sheet 44 of 51 US 9,461,996 B2

Management Dashboard 1800

Application 1 1802 Add

1812
Profile Conncction Application 2 , Add

Manger L 1802)

1814

icati Add
1810 Application 31802”
1816

Application 4 1802” Delete

,
\

j

(=]

—

(o]

s ™\

Application 5 1802"”
Application Folder o 1820
5
o
1804 Application ‘n 1 802”’”] Add
1822
Dclete All Add All
1806 1808

FIG. 19

U.S. Patent Oct. 4, 2016 Sheet 45 of 51 US 9,461,996 B2

Obtain Application Identifier

22002

Download Application Specifics From Application Database

Z2004

Obtain Path Information for the Application

2/2006

Generate Stub Application

2/2010

\ 4

Y

FIG. 20

U.S. Patent Oct. 4, 2016 Sheet 46 of 51 US 9,461,996 B2

{ Receive Stub Application }
2/2012
\ 4
[Interact with Windows Installer }
2/2014
\ 4
{ Install Stub Application on the Client }

2/2016

FIG. 21

U.S. Patent Oct. 4, 2016 Sheet 47 of 51 US 9,461,996 B2

Subscribing to an application not included in a user profile of a user

z 2020

Verify user permissions of the user and determine the user is permitted to subscribe

to the application
2/2030

Update the user profile of the user with the application

Z 2040

Transmit a stub application to the client, where the stub application represents the

application
z 2050

A 4

A 4

FIG. 22

U.S. Patent Oct. 4, 2016 Sheet 48 of 51 US 9,461,996 B2

Client 102

Intermediary 200
.5 CR vServer 600’
S — SSO/cloud
0.
Responder 2315 ACCGSS SyStem
2325
! 3" party hosted Disparately hosted applications 2305 :
| applications §
| 2310 |
Server 106 §

__

FIG. 23A

U.S. Patent Oct. 4, 2016 Sheet 49 of 51 US 9,461,996 B2

intercepting by an intermediary device client request to access
Step a login page of one of a
2355 " plurality disparately hosted applications
Step Responder of intermediary device redirecting client to
2360 — The cloud Access/SSO management system
Step Cloud access/SSO system
2365 ™ Does redirect to FQDN of third party hosted application
h 4
intercepting by a CR vServer of an intermediary device
Step the redirect to FQDN of third party hosted application and
2370 forwarding to SSO/cloud Access management system

Y

Step2375 Cloud Access/SSO system
Does redirect to FQDN of third party hosted application

A 4

Step 2380 ~al Intermediary device intercepts and forwards bypassing
The Cr vServer

FIG. 23B

US 9,461,996 B2

Sheet 50 of 51

Oct. 4, 2016

U.S. Patent

....................................... w v¥Z 9ld
Ns0€g uopeajddy NS0£Z uonedyddy
ajesedsiq Aued payL m 0Z¥2 J0108UU0D i
: uoneoyddy :
N90} Jeneg Aued payL v50£z uojeslddy

: 8 §Ive m 00¥2 90BL8IU] GOM
H1OMIN ; s|enuspal) Jasn m

g50¢z uopedyddy : 0Lbz m N §0£2 uofeoyddy

aeledsig ssudisiug i | uoneanByuon uonesnddy :
1 ! yIomoN

0£¥Z 80183 HIOMJON g6 subug Joxoed | v50¢g uopeayddy

Bupndwoy pnoi) R !
00Z Ateipawliaju| 00vZ 20891l

8901 Janag Aled payl

021 uaby uai)

201 wan)

Vv&oee
uonedddy sjesedsig

suod| uoneoliddy
V901 Jonles esudieiug : v\ F /

suoneoyddy psjsoH Ajgieledsiq @ Q : *

NG0EC dS90€C VS0EC NSOSZ 95067 YO0z
00¥Z 8deusu|

SU02; uoneolddy

Y N

00¥Z 2IBUSIU| oM

US 9,461,996 B2

Sheet 51 of 51

Oct. 4, 2016

U.S. Patent

ave Ol

@0IA8p Aleipawialul
8y} eIA Jasn ay) 0] uonesidde pajosies ay) Bunesiunwwon

%

uonesldde pajsoy Ajgjeledsip B JO uonoa|as 1asn e Buinieoay

t

sianles Aued paiyy sy} uo pue
sJaAlas asudiajua ay) uo Jasn ay) 0} 9|ge|ieAe suoneoldde
0 1s1| e Buisudwo? aoeLd)ul Ue Jasn ay) 01 Bueosiunwwoo

4

Jasn ay)
0] a|qe|ieAe suoieolidde paysiignd Jo 1SI| B $S8208 0} }senbal
Jasn e Buialeoal asudisjua ue Jo adinep Alelpawsiul ue

4

Jasn a8y} 01 a|ge|ieAe suoneoljdde
JoJ s|eiuapalo 1asn uo paseq Jasn e Buneonuayiny

0.¥¢ de1s

Gopg deis

09t¢ deis

GGyg deis

0SPe deis

US 9,461,996 B2

1
SYSTEMS AND METHODS FOR PROVIDING
A SINGLE CLICK ACCESS TO ENTERPRISE,
SAAS AND CLOUD HOSTED APPLICATION

RELATED APPLICATION

This application claims the benefit of and priority to U.S.
Provisional Application No. 61/332,433, entitled “SYS-
TEMS AND METHODS FOR PROVIDING SINGLE
CLICK ACCESS TO ENTERPRISE, SAAS AND CLOUD
HOSTED APPLICATION” and filed on May 7, 2010, which
is incorporated herein by reference in its entirety.

FIELD OF THE INVENTION

The present application generally relates to data commu-
nication networks. In particular, the present application
relates to systems and methods for providing single click
access to a combination of enterprise, SaaS and cloud hosted
applications.

BACKGROUND OF THE INVENTION

The number of applications in the data center has grown
as well as the types of applications. An enterprise via one or
more data centers may provide access to users to a multitude
of applications. Some of these applications are hosted by the
enterprise, while other applications are hosted by another
provider such as an application provided by a Software As
A Service (SaaS) service or an application hosted on a cloud
service. These disparately hosted applications provide chal-
lenges as these disparate systems may not share passwords
and authentication systems. This increases the expense and
management of passwords and authentication to these dif-
ferent systems.

BRIEF SUMMARY OF THE INVENTION

The solution of the present application addresses the
problem of accessing applications on disparately hosted
systems by providing a single click access via a single
interface to any combination of SaaS and cloud hosted
applications as well as traditional enterprise hosted applica-
tions. Embodiments of the systems and methods of the
present solution are directed to providing a single access
interface to a plurality of disparately hosted applications,
such as Software As A Service, Platform As A Service
(PaaS) hosted applications, Infrastructure As A Service
(IaaS) applications, cloud hosted applications and enterprise
hosted applications. Any embodiments of the application
delivery controller (ADC) described herein may provide a
user interface for a remote user to gain access to any one or
more of the plurality of differently hosted applications by
clicking on a visual representation of the application in a list
of published applications for which the user is allowed to
access. Via the same remote access user interface, a user
may access an application hosted outside the enterprise the
same way the user may gain access to a data center or
enterprise hosted application. Transparent and seamless to
the user, ADC provides access to the disparately hosted
systems via a single click user interface upon which the user
can launch any one of a SaaS, Cloud or enterprise applica-
tion.

In some aspects, the present disclosure relates to a method
of providing a user a selectable list of disparately hosted
applications. A device intermediary to a client and one or
more servers may receive a request from a user on the client

10

15

20

25

30

35

40

45

50

55

60

65

2

to access a list of applications published to the user. The
device may communicate to the client the list of published
applications available to the user, the list of published
applications comprising a plurality of graphical icons cor-
responding to a plurality of disparately hosted applications,
at least one graphical icon corresponding to a third party
hosted application of the plurality of disparately hosted
applications, the third party hosted application served by a
remote third party server. The device may receive a selection
from the user of the at least one graphical icon correspond-
ing to the third party hosted application. The device may
communicate, from the remote third party server to the client
of the user, execution of the third party hosted application
responsive to the selection by the user.

In some embodiments, the device authenticates the user
via a single set of authentication credentials for accessing
the plurality of disparately hosted applications. The device
may identify applications for the list of published applica-
tions available for access to the user. The list of published
applications may comprise one or more graphical icons
corresponding to one or more applications hosted by third
party servers on third party networks and one or more
graphical icons corresponding to one or more applications
hosted on one or more local servers on a local network of the
device. In some embodiments, the device enumerates all
disparately hosted applications available for access by the
user into the list of published applications, a first application
of the list of published applications comprising an applica-
tion hosted by an enterprise of the device, a second appli-
cation of the list of published applications comprising an
application of the enterprise hosted via a cloud computing
service and a third application of the list of published
applications comprising a third-party application hosted by
a third-party server.

In some embodiments, the device provides the list of
published applications via one of a web interface page or a
program neighborhood. The device may receive the selec-
tion from the user the at least one graphical corresponding
to the third party hosted application comprising one of a
Software as a Service (SAAS) application, a Platform as a
Service (PAAS) application or an Infrastructure as a Service
(IAAS) application. The device may automatically perform
a login, by the device, to the third party hosted application
on behalf of the user. The device may authenticate the user
to the third party hosted application using authentication
credentials managed by the device for the user. In some
embodiments, the device communicates execution of the
third party hosted application via one of streaming, a virtu-
alized environment or a remote display protocol. In another
embodiment, the device receives a second selection of a
second graphical icon corresponding to an application
hosted by a local server of an enterprise of the device. The
device may communicate execution of the selected second
application to the client of the user.

In some aspects, the present disclosure relates to a system
for providing a user a selectable list of disparately hosted
applications. The system may include a device intermediary
to a client and one or more servers. The device may receive
a request from a user on the client to access a list of
applications published to the user. A packet engine of the
device may communicate the list of published applications
available to the user. The list of published applications may
comprise a plurality of graphical icons corresponding to a
plurality of disparately hosted applications, at least one
graphical icon corresponding to a third party hosted appli-
cation of the plurality of disparately hosted applications, the
third party hosted application served by a remote third party

US 9,461,996 B2

3

server. The packet engine may receive a selection from the
user of the at least one graphical icon corresponding to the
third party hosted application. The execution of the third-
party hosed application from the remote third party server
may be communicated, via the device, to the client of the
user responsive to the selection by the user.

In some embodiments, the device authenticates the user
via a single set of authentication credentials for accessing
the plurality of disparately hosted applications. In some
embodiments, the device identifies applications for the list
of applications available for access to the user, the list of
published applications comprising one or more graphical
icons corresponding to one or more applications hosted by
third party servers on third party networks and one or more
graphical icons corresponding to one or more applications
hosted on one or more local servers on a local network of the
device. In further embodiments, the device enumerates all
disparately hosted applications available for access by the
user into the list of published applications, a first application
of the list of published applications comprising an applica-
tion hosted by an enterprise of the device, a second appli-
cation of the list of published applications comprising an
application of the enterprise hosted via a cloud computing
service and a third application of the list of published
applications comprising a third-party application hosted by
a third-party server.

In some embodiments, the device provides the list of
published applications via one of a web interface page or a
program neighborhood. In further embodiments, the device
receives the selection from the user of the at least one
graphical icon corresponding to the third party hosted appli-
cation comprising one of a Software as a Service (SAAS)
application, a Platform as a Service (PAAS) application or
an Infrastructure as a Service (IAAS) application. In further
embodiments, the device automatically performs a login to
the third party hosted application on behalf of the user. In
some embodiments, the device authenticates the user to the
third party hosted application using authentication creden-
tials managed by the device for the user. In further embodi-
ments, the device communicates execution of the third party
hosted application via one of streaming, a virtualized envi-
ronment or a remote display protocol. In still further
embodiments, the device receives a second selection of a
second graphical icon corresponding to an application
hosted by a local server of an enterprise of the device and
communicates execution of the selected second application
to the client of the user.

The details of various embodiments of the invention are
set forth in the accompanying drawings and the description
below.

BRIEF DESCRIPTION OF THE FIGURES

The foregoing and other objects, aspects, features, and
advantages of the invention will become more apparent and
better understood by referring to the following description
taken in conjunction with the accompanying drawings, in
which:

FIG. 1A is a block diagram of an embodiment of a
network environment for a client to access a server via an
appliance;

FIG. 1B is a block diagram of an embodiment of an
environment for delivering a computing environment from a
server to a client via an appliance;

FIG. 1C is a block diagram of another embodiment of an
environment for delivering a computing environment from a
server to a client via an appliance;

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 1D is a block diagram of another embodiment of an
environment for delivering a computing environment from a
server to a client via an appliance;

FIGS. 1E-1H are block diagrams of embodiments of a
computing device;

FIG. 2A is a block diagram of an embodiment of an
appliance for processing communications between a client
and a server;

FIG. 2B is a block diagram of another embodiment of an
appliance for optimizing, accelerating, load-balancing and
routing communications between a client and a server;

FIG. 3 is a block diagram of an embodiment of a client for
communicating with a server via the appliance;

FIG. 4A is a block diagram of an embodiment of a
virtualization environment;

FIG. 4B is a block diagram of another embodiment of a
virtualization environment;

FIG. 4C is a block diagram of an embodiment of a
virtualized appliance;

FIG. 5A are block diagrams of embodiments of
approaches to implementing parallelism in a multi-core
system,

FIG. 5B is a block diagram of an embodiment of a system
utilizing a multi-core system;

FIG. 5C is a block diagram of another embodiment of an
aspect of a multi-core system;

FIG. 6A is a block diagram of an embodiment of an
intermediary device for maintaining the original IP address
of a client request while performing cache redirection;

FIG. 6B is a flow diagram of an embodiment of steps of
a method for maintaining, by an intermediary device, the
original IP address of a client request while performing
cache redirection;

FIG. 7A is a block diagram of an embodiment of an
intermediary device for maintaining original source and
destination IP addresses of a client request while performing
transparent cache redirection by an intermediary device;

FIG. 7B is a flow diagram of an embodiment of steps of
a method for maintaining original source and destination IP
addresses of a client request while performing transparent
cache redirection by an intermediary device;

FIG. 8A is a block diagram of an embodiment of a single
authentication domain across disparately hosted applica-
tions;

FIG. 8B is a depiction of embodiments of use cases of a
single authentication domain across disparately hosted
applications;

FIG. 8C is a depiction of embodiments of a use case of a
seamless user access across disparately hosted applications;

FIG. 8D is a depiction of embodiments of a use case of
offloaded single sign on (SSO) policy management for
disparately hosted applications;

FIG. 8E is a depiction of embodiments of a use case of
promoting movement of workloads or applications to the
cloud;

FIG. 8F is a depiction of another embodiment of moving
workloads or applications to the cloud;

FIG. 9A is a block diagram of an embodiment of SSO
access to SaaS, enterprise and cloud hosted applications;

FIG. 9B is a block diagram of another embodiment of
SSO access to SaaS, enterprise and cloud hosted applica-
tions;

FIG. 9C is a block diagram of another embodiment of
SSO access to SaaS, enterprise and cloud hosted applica-
tions;

FIG. 10A is a block diagram of example deployment of an
embodiment of the present solution;

US 9,461,996 B2

5

FIG. 10B is a block diagram of another example deploy-
ment of an embodiment of the present solution;

FIG. 10C is a block diagram of another example deploy-
ment of an embodiment of the present solution;

FIG. 10D is a block diagram of another example deploy-
ment of an embodiment of the present solution;

FIG. 11 is a block diagram of an embodiment of cloud
bursting;

FIG. 12A is a block diagram depicting an embodiment of
a server farm;

FIG. 12B is a block diagram depicting one embodiment of
a system for providing a plurality of application programs
available to the client via publishing of GUIs in a web
service directory;

FIG. 13A is a diagram of a set of computer network
resource groupings according to an illustrative embodiment
of the invention;

FIG. 13B is a diagram of a set of computer network user
groupings according to an illustrative embodiment of the
invention;

FIG. 14 is a table depicting example enrollment rules
according to an illustrative embodiment of the invention;

FIG. 15 is a flow chart of a method for enrolling a
networked resource according to an illustrative embodiment
of the invention;

FIG. 16 is an enrollment database depicting an example
set of enrollments according to an illustrative embodiment
of the invention;

FIG. 17 is a flow chart of a method of granting remote
access to a computer according to an illustrative embodi-
ment of the invention;

FIG. 18A is a block diagram of an embodiment of a
system for delivering an interactive application store;

FIG. 18B is a block diagram of an embodiment of a
system for delivering an interactive application store;

FIG. 19 is a block diagram of an embodiment of an
interface for an application for delivering an interactive
application store;

FIG. 20 is a flow diagram of an embodiment of a method
for creating a stub application;

FIG. 21 is a flow diagram of an embodiment of a method
for interacting with a stub application;

FIG. 22 is a flow diagram of an embodiment of subscrib-
ing to an application using a stub application;

FIG. 23A is a block diagram of embodiments of an
intermediary device providing single sign on access to
disparately hosted applications;

FIG. 23B is a flow diagram of embodiments of a method
for providing single sign on access to disparately hosted
applications;

FIG. 24A is a block diagram of a system for providing a
user a selectable list of disparately hosted applications; and

FIG. 24B is a flow diagram of embodiments of a method
of providing a user a selectable list of disparately hosted
applications.

In the drawings, like reference numbers generally indicate
identical, functionally similar, and/or structurally similar
elements.

DETAILED DESCRIPTION OF THE
INVENTION

For purposes of reading the description of the various
embodiments below, the following descriptions of the sec-
tions of the specification and their respective contents may
be helpful:

10

15

20

25

30

35

40

45

50

55

60

65

6

Section A describes a network environment and comput-
ing environment which may be useful for practicing
embodiments described herein;

Section B describes embodiments of systems and meth-
ods for delivering a computing environment to a remote
user;

Section C describes embodiments of systems and meth-
ods for accelerating communications between a client
and a server;

Section D describes embodiments of systems and meth-
ods for virtualizing an application delivery controller;

Section E describes embodiments of systems and methods
for providing a multi-core architecture and environ-
ment;

Section F describes embodiments of systems and methods
for policy based transparent client IP insertion;

Section G describes embodiments of systems and meth-
ods for transparent end to end cache redirection;

Section H describes embodiments of systems and meth-
ods for providing single sign on access to disparately
hosted applications;

Section I describes embodiments of systems and methods
for methods and systems for generating and delivering
an interactive application delivery store;

Section J describes embodiments of systems and methods
for providing a Program Neighborhood and Access to
applications on remote servers;

Section K describes embodiments of systems and meth-
ods for providing single sign on access via an interme-
diary device to disparately hosted application; and

Section [describes embodiments of systems and methods
for single click access to a combination of SaaS, cloud
and enterprise applications.

A. Network and Computing Environment

Prior to discussing the specifics of embodiments of the
systems and methods of an appliance and/or client, it may be
helpful to discuss the network and computing environments
in which such embodiments may be deployed. Referring
now to FIG. 1A, an embodiment of a network environment
is depicted. In brief overview, the network environment
comprises one or more clients 102¢-102% (also generally
referred to as local machine(s) 102, or client(s) 102) in
communication with one or more servers 106a-106» (also
generally referred to as server(s) 106, or remote machine(s)
106) via one or more networks 104, 104' (generally referred
to as network 104). In some embodiments, a client 102
communicates with a server 106 via an appliance 200.

Although FIG. 1A shows a network 104 and a network
104' between the clients 102 and the servers 106, the clients
102 and the servers 106 may be on the same network 104.
The networks 104 and 104' can be the same type of network
or different types of networks. The network 104 and/or the
network 104' can be a local-area network (LAN), such as a
company Intranet, a metropolitan area network (MAN), or a
wide area network (WAN), such as the Internet or the World
Wide Web. In one embodiment, network 104' may be a
private network and network 104 may be a public network.
In some embodiments, network 104 may be a private
network and network 104' a public network. In another
embodiment, networks 104 and 104' may both be private
networks. In some embodiments, clients 102 may be located
at a branch office of a corporate enterprise communicating
via a WAN connection over the network 104 to the servers
106 located at a corporate data center.

The network 104 and/or 104' be any type and/or form of
network and may include any of the following: a point to
point network, a broadcast network, a wide area network, a

US 9,461,996 B2

7

local area network, a telecommunications network, a data
communication network, a computer network, an ATM
(Asynchronous Transfer Mode) network, a SONET (Syn-
chronous Optical Network) network, a SDH (Synchronous
Digital Hierarchy) network, a wireless network and a wire-
line network. In some embodiments, the network 104 may
comprise a wireless link, such as an infrared channel or
satellite band. The topology of the network 104 and/or 104'
may be a bus, star, or ring network topology. The network
104 and/or 104' and network topology may be of any such
network or network topology as known to those ordinarily
skilled in the art capable of supporting the operations
described herein.

As shown in FIG. 1A, the appliance 200, which also may
be referred to as an interface unit 200 or gateway 200, is
shown between the networks 104 and 104'. In some embodi-
ments, the appliance 200 may be located on network 104.
For example, a branch office of a corporate enterprise may
deploy an appliance 200 at the branch office. In other
embodiments, the appliance 200 may be located on network
104'. For example, an appliance 200 may be located at a
corporate data center. In yet another embodiment, a plurality
of'appliances 200 may be deployed on network 104. In some
embodiments, a plurality of appliances 200 may be deployed
on network 104'. In one embodiment, a first appliance 200
communicates with a second appliance 200'. In other
embodiments, the appliance 200 could be a part of any client
102 or server 106 on the same or different network 104,104'
as the client 102. One or more appliances 200 may be
located at any point in the network or network communi-
cations path between a client 102 and a server 106.

In some embodiments, the appliance 200 comprises any
of'the network devices manufactured by Citrix Systems, Inc.
of Ft. Lauderdale Fla., referred to as Citrix NetScaler
devices. In other embodiments, the appliance 200 includes
any of the product embodiments referred to as WebAccel-
erator and BigIP manufactured by F5 Networks, Inc. of
Seattle, Wash. In another embodiment, the appliance 205
includes any of the DX acceleration device platforms and/or
the SSL VPN series of devices, such as SA 700, SA 2000,
SA 4000, and SA 6000 devices manufactured by Juniper
Networks, Inc. of Sunnyvale, Calif. In yet another embodi-
ment, the appliance 200 includes any application accelera-
tion and/or security related appliances and/or software
manufactured by Cisco Systems, Inc. of San Jose, Calif.,
such as the Cisco ACE Application Control Engine Module
service software and network modules, and Cisco AVS
Series Application Velocity System.

In one embodiment, the system may include multiple,
logically-grouped servers 106. In these embodiments, the
logical group of servers may be referred to as a server farm
38. In some of these embodiments, the serves 106 may be
geographically dispersed. In some cases, a farm 38 may be
administered as a single entity. In other embodiments, the
server farm 38 comprises a plurality of server farms 38. In
one embodiment, the server farm executes one or more
applications on behalf of one or more clients 102.

The servers 106 within each farm 38 can be heteroge-
neous. One or more of the servers 106 can operate according
to one type of operating system platform (e.g., WINDOWS
NT, manufactured by Microsoft Corp. of Redmond, Wash.),
while one or more of the other servers 106 can operate on
according to another type of operating system platform (e.g.,
Unix or Linux). The servers 106 of each farm 38 do not need
to be physically proximate to another server 106 in the same
farm 38. Thus, the group of servers 106 logically grouped as
a farm 38 may be interconnected using a wide-area network

20

30

35

40

45

55

8

(WAN) connection or medium-area network (MAN) con-
nection. For example, a farm 38 may include servers 106
physically located in different continents or different regions
of a continent, country, state, city, campus, or room. Data
transmission speeds between servers 106 in the farm 38 can
be increased if the servers 106 are connected using a
local-area network (LAN) connection or some form of direct
connection.

Servers 106 may be referred to as a file server, application
server, web server, proxy server, or gateway server. In some
embodiments, a server 106 may have the capacity to func-
tion as either an application server or as a master application
server. In one embodiment, a server 106 may include an
Active Directory. The clients 102 may also be referred to as
client nodes or endpoints. In some embodiments, a client
102 has the capacity to function as both a client node seeking
access to applications on a server and as an application
server providing access to hosted applications for other
clients 1024-1027.

In some embodiments, a client 102 communicates with a
server 106. In one embodiment, the client 102 communi-
cates directly with one of the servers 106 in a farm 38. In
another embodiment, the client 102 executes a program
neighborhood application to communicate with a server 106
in a farm 38. In still another embodiment, the server 106
provides the functionality of a master node. In some embodi-
ments, the client 102 communicates with the server 106 in
the farm 38 through a network 104. Over the network 104,
the client 102 can, for example, request execution of various
applications hosted by the servers 106a-106% in the farm 38
and receive output of the results of the application execution
for display. In some embodiments, only the master node
provides the functionality required to identify and provide
address information associated with a server 106' hosting a
requested application.

In one embodiment, the server 106 provides functionality
of a web server. In another embodiment, the server 106a
receives requests from the client 102, forwards the requests
to a second server 1065 and responds to the request by the
client 102 with a response to the request from the server
10654. In still another embodiment, the server 106 acquires
an enumeration of applications available to the client 102
and address information associated with a server 106 hosting
an application identified by the enumeration of applications.
In yet another embodiment, the server 106 presents the
response to the request to the client 102 using a web
interface. In one embodiment, the client 102 communicates
directly with the server 106 to access the identified appli-
cation. In another embodiment, the client 102 receives
application output data, such as display data, generated by
an execution of the identified application on the server 106.

Referring now to FIG. 1B, an embodiment of a network
environment deploying multiple appliances 200 is depicted.
A first appliance 200 may be deployed on a first network 104
and a second appliance 200' on a second network 104'. For
example a corporate enterprise may deploy a first appliance
200 at a branch office and a second appliance 200" at a data
center. In another embodiment, the first appliance 200 and
second appliance 200' are deployed on the same network
104 or network 104. For example, a first appliance 200 may
be deployed for a first server farm 38, and a second
appliance 200 may be deployed for a second server farm 38'.
In another example, a first appliance 200 may be deployed
at a first branch office while the second appliance 200" is
deployed at a second branch office'. In some embodiments,
the first appliance 200 and second appliance 200' work in

US 9,461,996 B2

9

cooperation or in conjunction with each other to accelerate
network traffic or the delivery of application and data
between a client and a server

Referring now to FIG. 1C, another embodiment of a
network environment deploying the appliance 200 with one
or more other types of appliances, such as between one or
more WAN optimization appliance 205, 205' is depicted. For
example a first WAN optimization appliance 205 is shown
between networks 104 and 104' and a second WAN optimi-
zation appliance 205' may be deployed between the appli-
ance 200 and one or more servers 106. By way of example,
a corporate enterprise may deploy a first WAN optimization
appliance 205 at a branch office and a second WAN opti-
mization appliance 205" at a data center. In some embodi-
ments, the appliance 205 may be located on network 104'. In
other embodiments, the appliance 205' may be located on
network 104. In some embodiments, the appliance 205' may
be located on network 104' or network 104". In one embodi-
ment, the appliance 205 and 205' are on the same network.
In another embodiment, the appliance 205 and 205' are on
different networks. In another example, a first WAN opti-
mization appliance 205 may be deployed for a first server
farm 38 and a second WAN optimization appliance 205' for
a second server farm 38'

In one embodiment, the appliance 205 is a device for
accelerating, optimizing or otherwise improving the perfor-
mance, operation, or quality of service of any type and form
of network traffic, such as traffic to and/or from a WAN
connection. In some embodiments, the appliance 205 is a
performance enhancing proxy. In other embodiments, the
appliance 205 is any type and form of WAN optimization or
acceleration device, sometimes also referred to as a WAN
optimization controller. In one embodiment, the appliance
205 is any of the product embodiments referred to as
WANScaler manufactured by Citrix Systems, Inc. of Ft.
Lauderdale, Fla. In other embodiments, the appliance 205
includes any of the product embodiments referred to as
BIG-IP link controller and WANjet manufactured by F5
Networks, Inc. of Seattle, Wash. In another embodiment, the
appliance 205 includes any of the WX and WXC WAN
acceleration device platforms manufactured by Juniper Net-
works, Inc. of Sunnyvale, Calif. In some embodiments, the
appliance 205 includes any of the steelhead line of WAN
optimization appliances manufactured by Riverbed Technol-
ogy of San Francisco, Calif. In other embodiments, the
appliance 205 includes any of the WAN related devices
manufactured by Expand Networks Inc. of Roseland, N.J. In
one embodiment, the appliance 205 includes any of the
WAN related appliances manufactured by Packeteer Inc. of
Cupertino, Calif., such as the PacketShaper, iShared, and
SkyX product embodiments provided by Packeteer. In yet
another embodiment, the appliance 205 includes any WAN
related appliances and/or software manufactured by Cisco
Systems, Inc. of San Jose, Calif., such as the Cisco Wide
Area Network Application Services software and network
modules, and Wide Area Network engine appliances.

In one embodiment, the appliance 205 provides applica-
tion and data acceleration services for branch-office or
remote offices. In one embodiment, the appliance 205
includes optimization of Wide Area File Services (WAFS).
In another embodiment, the appliance 205 accelerates the
delivery of files, such as via the Common Internet File
System (CIFS) protocol. In other embodiments, the appli-
ance 205 provides caching in memory and/or storage to
accelerate delivery of applications and data. In one embodi-
ment, the appliance 205 provides compression of network
traffic at any level of the network stack or at any protocol or

10

15

20

25

30

35

40

45

50

55

60

65

10

network layer. In another embodiment, the appliance 205
provides transport layer protocol optimizations, flow con-
trol, performance enhancements or modifications and/or
management to accelerate delivery of applications and data
over a WAN connection. For example, in one embodiment,
the appliance 205 provides Transport Control Protocol
(TCP) optimizations. In other embodiments, the appliance
205 provides optimizations, flow control, performance
enhancements or modifications and/or management for any
session or application layer protocol.

In another embodiment, the appliance 205 encoded any
type and form of data or information into custom or standard
TCP and/or IP header fields or option fields of network
packet to announce presence, functionality or capability to
another appliance 205'. In another embodiment, an appli-
ance 205' may communicate with another appliance 205'
using data encoded in both TCP and/or IP header fields or
options. For example, the appliance may use TCP option(s)
or IP header fields or options to communicate one or more
parameters to be used by the appliances 205, 205" in per-
forming functionality, such as WAN acceleration, or for
working in conjunction with each other.

In some embodiments, the appliance 200 preserves any of
the information encoded in TCP and/or IP header and/or
option fields communicated between appliances 205 and
205'. For example, the appliance 200 may terminate a
transport layer connection traversing the appliance 200, such
as a transport layer connection from between a client and a
server traversing appliances 205 and 205'. In one embodi-
ment, the appliance 200 identifies and preserves any
encoded information in a transport layer packet transmitted
by a first appliance 205 via a first transport layer connection
and communicates a transport layer packet with the encoded
information to a second appliance 205' via a second trans-
port layer connection.

Referring now to FIG. 1D, a network environment for
delivering and/or operating a computing environment on a
client 102 is depicted. In some embodiments, a server 106
includes an application delivery system 190 for delivering a
computing environment or an application and/or data file to
one or more clients 102. In brief overview, a client 10 is in
communication with a server 106 via network 104, 104' and
appliance 200. For example, the client 102 may reside in a
remote office of a company, e.g., a branch office, and the
server 106 may reside at a corporate data center. The client
102 comprises a client agent 120, and a computing envi-
ronment 15. The computing environment 15 may execute or
operate an application that accesses, processes or uses a data
file. The computing environment 15, application and/or data
file may be delivered via the appliance 200 and/or the server
106.

In some embodiments, the appliance 200 accelerates
delivery of a computing environment 15, or any portion
thereof, to a client 102. In one embodiment, the appliance
200 accelerates the delivery of the computing environment
15 by the application delivery system 190. For example, the
embodiments described herein may be used to accelerate
delivery of a streaming application and data file processable
by the application from a central corporate data center to a
remote user location, such as a branch office of the company.
In another embodiment, the appliance 200 accelerates trans-
port layer traffic between a client 102 and a server 106. The
appliance 200 may provide acceleration techniques for
accelerating any transport layer payload from a server 106 to
a client 102, such as: 1) transport layer connection pooling,
2) transport layer connection multiplexing, 3) transport
control protocol buffering, 4) compression and 5) caching.

US 9,461,996 B2

11

In some embodiments, the appliance 200 provides load
balancing of servers 106 in responding to requests from
clients 102. In other embodiments, the appliance 200 acts as
a proxy or access server to provide access to the one or more
servers 106. In another embodiment, the appliance 200
provides a secure virtual private network connection from a
first network 104 of the client 102 to the second network
104' of the server 106, such as an SSL. VPN connection. It
yet other embodiments, the appliance 200 provides appli-
cation firewall security, control and management of the
connection and communications between a client 102 and a
server 106.

In some embodiments, the application delivery manage-
ment system 190 provides application delivery techniques to
deliver a computing environment to a desktop of a user,
remote or otherwise, based on a plurality of execution
methods and based on any authentication and authorization
policies applied via a policy engine 195. With these tech-
niques, a remote user may obtain a computing environment
and access to server stored applications and data files from
any network connected device 100. In one embodiment, the
application delivery system 190 may reside or execute on a
server 106. In another embodiment, the application delivery
system 190 may reside or execute on a plurality of servers
106a-106%. In some embodiments, the application delivery
system 190 may execute in a server farm 38. In one
embodiment, the server 106 executing the application deliv-
ery system 190 may also store or provide the application and
data file. In another embodiment, a first set of one or more
servers 106 may execute the application delivery system
190, and a different server 106 may store or provide the
application and data file. In some embodiments, each of the
application delivery system 190, the application, and data
file may reside or be located on different servers. In yet
another embodiment, any portion of the application delivery
system 190 may reside, execute or be stored on or distrib-
uted to the appliance 200, or a plurality of appliances.

The client 102 may include a computing environment 15
for executing an application that uses or processes a data file.
The client 102 via networks 104, 104' and appliance 200
may request an application and data file from the server 106.
In one embodiment, the appliance 200 may forward a
request from the client 102 to the server 106. For example,
the client 102 may not have the application and data file
stored or accessible locally. In response to the request, the
application delivery system 190 and/or server 106 may
deliver the application and data file to the client 102. For
example, in one embodiment, the server 106 may transmit
the application as an application stream to operate in com-
puting environment 15 on client 102.

In some embodiments, the application delivery system
190 comprises any portion of the Citrix Access Suite™ by
Citrix Systems, Inc., such as the MetaFrame or Citrix
Presentation Server™ and/or any of the Microsoft® Win-
dows Terminal Services manufactured by the Microsoft
Corporation. In one embodiment, the application delivery
system 190 may deliver one or more applications to clients
102 or users via a remote-display protocol or otherwise via
remote-based or server-based computing. In another
embodiment, the application delivery system 190 may
deliver one or more applications to clients or users via
steaming of the application.

In one embodiment, the application delivery system 190
includes a policy engine 195 for controlling and managing
the access to, selection of application execution methods and
the delivery of applications. In some embodiments, the
policy engine 195 determines the one or more applications

10

15

20

25

30

35

40

45

50

55

60

12

a user or client 102 may access. In another embodiment, the
policy engine 195 determines how the application should be
delivered to the user or client 102, e.g., the method of
execution. In some embodiments, the application delivery
system 190 provides a plurality of delivery techniques from
which to select a method of application execution, such as
a server-based computing, streaming or delivering the appli-
cation locally to the client 120 for local execution.

In one embodiment, a client 102 requests execution of an
application program and the application delivery system 190
comprising a server 106 selects a method of executing the
application program. In some embodiments, the server 106
receives credentials from the client 102. In another embodi-
ment, the server 106 receives a request for an enumeration
of'available applications from the client 102. In one embodi-
ment, in response to the request or receipt of credentials, the
application delivery system 190 enumerates a plurality of
application programs available to the client 102. The appli-
cation delivery system 190 receives a request to execute an
enumerated application. The application delivery system
190 selects one of a predetermined number of methods for
executing the enumerated application, for example, respon-
sive to a policy of a policy engine. The application delivery
system 190 may select a method of execution of the appli-
cation enabling the client 102 to receive application-output
data generated by execution of the application program on a
server 106. The application delivery system 190 may select
a method of execution of the application enabling the local
machine 10 to execute the application program locally after
retrieving a plurality of application files comprising the
application. In yet another embodiment, the application
delivery system 190 may select a method of execution of the
application to stream the application via the network 104 to
the client 102.

A client 102 may execute, operate or otherwise provide an
application, which can be any type and/or form of software,
program, or executable instructions such as any type and/or
form of web browser, web-based client, client-server appli-
cation, a thin-client computing client, an ActiveX control, or
a Java applet, or any other type and/or form of executable
instructions capable of executing on client 102. In some
embodiments, the application may be a server-based or a
remote-based application executed on behalf of the client
102 on a server 106. In one embodiments the server 106 may
display output to the client 102 using any thin-client or
remote-display protocol, such as the Independent Comput-
ing Architecture (ICA) protocol manufactured by Citrix
Systems, Inc. of Ft. Lauderdale, Fla. or the Remote Desktop
Protocol (RDP) manufactured by the Microsoft Corporation
of Redmond, Wash. The application can use any type of
protocol and it can be, for example, an HTTP client, an FTP
client, an Oscar client, or a Telnet client. In other embodi-
ments, the application comprises any type of software
related to VoIP communications, such as a soft IP telephone.
In further embodiments, the application comprises any
application related to real-time data communications, such
as applications for streaming video and/or audio.

In some embodiments, the server 106 or a server farm 38
may be running one or more applications, such as an
application providing a thin-client computing or remote
display presentation application. In one embodiment, the
server 106 or server farm 38 executes as an application, any
portion of the Citrix Access Suite™ by Citrix Systems, Inc.,
such as the MetaFrame or Citrix Presentation Server™,
and/or any of the Microsoft® Windows Terminal Services
manufactured by the Microsoft Corporation. In one embodi-
ment, the application is an ICA client, developed by Citrix

US 9,461,996 B2

13

Systems, Inc. of Fort Lauderdale, Fla. In other embodi-
ments, the application includes a Remote Desktop (RDP)
client, developed by Microsoft Corporation of Redmond,
Wash. Also, the server 106 may run an application, which for
example, may be an application server providing email
services such as Microsoft Exchange manufactured by the
Microsoft Corporation of Redmond, Wash., a web or Inter-
net server, or a desktop sharing server, or a collaboration
server. In some embodiments, any of the applications may
comprise any type of hosted service or products, such as
GoToMeeting™ provided by Citrix Online Division, Inc. of
Santa Barbara, Calif., WebEx™ provided by WebEx, Inc. of
Santa Clara, Calif., or Microsoft Office Live Meeting pro-
vided by Microsoft Corporation of Redmond, Wash.

Still referring to FIG. 1D, an embodiment of the network
environment may include a monitoring server 106A. The
monitoring server 106 A may include any type and form
performance monitoring service 198. The performance
monitoring service 198 may include monitoring, measure-
ment and/or management software and/or hardware, includ-
ing data collection, aggregation, analysis, management and
reporting. In one embodiment, the performance monitoring
service 198 includes one or more monitoring agents 197.
The monitoring agent 197 includes any software, hardware
or combination thereof for performing monitoring, measure-
ment and data collection activities on a device, such as a
client 102, server 106 or an appliance 200, 205. In some
embodiments, the monitoring agent 197 includes any type
and form of script, such as Visual Basic script, or Javascript.
In one embodiment, the monitoring agent 197 executes
transparently to any application and/or user of the device. In
some embodiments, the monitoring agent 197 is installed
and operated unobtrusively to the application or client. In yet
another embodiment, the monitoring agent 197 is installed
and operated without any instrumentation for the application
or device.

In some embodiments, the monitoring agent 197 moni-
tors, measures and collects data on a predetermined fre-
quency. In other embodiments, the monitoring agent 197
monitors, measures and collects data based upon detection
of any type and form of event. For example, the monitoring
agent 197 may collect data upon detection of a request for
a web page or receipt of an HTTP response. In another
example, the monitoring agent 197 may collect data upon
detection of any user input events, such as a mouse click.
The monitoring agent 197 may report or provide any moni-
tored, measured or collected data to the monitoring service
198. In one embodiment, the monitoring agent 197 transmits
information to the monitoring service 198 according to a
schedule or a predetermined frequency. In another embodi-
ment, the monitoring agent 197 transmits information to the
monitoring service 198 upon detection of an event.

In some embodiments, the monitoring service 198 and/or
monitoring agent 197 performs monitoring and performance
measurement of any network resource or network infrastruc-
ture element, such as a client, server, server farm, appliance
200, appliance 205, or network connection. In one embodi-
ment, the monitoring service 198 and/or monitoring agent
197 performs monitoring and performance measurement of
any transport layer connection, such as a TCP or UDP
connection. In another embodiment, the monitoring service
198 and/or monitoring agent 197 monitors and measures
network latency. In yet one embodiment, the monitoring
service 198 and/or monitoring agent 197 monitors and
measures bandwidth utilization.

In other embodiments, the monitoring service 198 and/or
monitoring agent 197 monitors and measures end-user

10

15

20

25

30

35

40

45

50

55

60

65

14

response times. In some embodiments, the monitoring ser-
vice 198 performs monitoring and performance measure-
ment of an application. In another embodiment, the moni-
toring service 198 and/or monitoring agent 197 performs
monitoring and performance measurement of any session or
connection to the application. In one embodiment, the
monitoring service 198 and/or monitoring agent 197 moni-
tors and measures performance of a browser. In another
embodiment, the monitoring service 198 and/or monitoring
agent 197 monitors and measures performance of HTTP
based transactions. In some embodiments, the monitoring
service 198 and/or monitoring agent 197 monitors and
measures performance of a Voice over IP (VoIP) application
or session. In other embodiments, the monitoring service
198 and/or monitoring agent 197 monitors and measures
performance of a remote display protocol application, such
as an ICA client or RDP client. In yet another embodiment,
the monitoring service 198 and/or monitoring agent 197
monitors and measures performance of any type and form of
streaming media. In still a further embodiment, the moni-
toring service 198 and/or monitoring agent 197 monitors and
measures performance of a hosted application or a Software-
As-A-Service (SaaS) delivery model.

In some embodiments, the monitoring service 198 and/or
monitoring agent 197 performs monitoring and performance
measurement of one or more transactions, requests or
responses related to application. In other embodiments, the
monitoring service 198 and/or monitoring agent 197 moni-
tors and measures any portion of an application layer stack,
such as any .NET or J2EE calls. In one embodiment, the
monitoring service 198 and/or monitoring agent 197 moni-
tors and measures database or SQL transactions. In yet
another embodiment, the monitoring service 198 and/or
monitoring agent 197 monitors and measures any method,
function or application programming interface (API) call.

In one embodiment, the monitoring service 198 and/or
monitoring agent 197 performs monitoring and performance
measurement of a delivery of application and/or data from a
server to a client via one or more appliances, such as
appliance 200 and/or appliance 205. In some embodiments,
the monitoring service 198 and/or monitoring agent 197
monitors and measures performance of delivery of a virtu-
alized application. In other embodiments, the monitoring
service 198 and/or monitoring agent 197 monitors and
measures performance of delivery of a streaming applica-
tion. In another embodiment, the monitoring service 198
and/or monitoring agent 197 monitors and measures perfor-
mance of delivery of a desktop application to a client and/or
the execution of the desktop application on the client. In
another embodiment, the monitoring service 198 and/or
monitoring agent 197 monitors and measures performance
of a client/server application.

In one embodiment, the monitoring service 198 and/or
monitoring agent 197 is designed and constructed to provide
application performance management for the application
delivery system 190. For example, the monitoring service
198 and/or monitoring agent 197 may monitor, measure and
manage the performance of the delivery of applications via
the Citrix Presentation Server. In this example, the moni-
toring service 198 and/or monitoring agent 197 monitors
individual ICA sessions. The monitoring service 198 and/or
monitoring agent 197 may measure the total and per session
system resource usage, as well as application and network-
ing performance. The monitoring service 198 and/or moni-
toring agent 197 may identify the active servers for a given
user and/or user session. In some embodiments, the moni-
toring service 198 and/or monitoring agent 197 monitors

US 9,461,996 B2

15

back-end connections between the application delivery sys-
tem 190 and an application and/or database server. The
monitoring service 198 and/or monitoring agent 197 may
measure network latency, delay and volume per user-session
or ICA session.

In some embodiments, the monitoring service 198 and/or
monitoring agent 197 measures and monitors memory usage
for the application delivery system 190, such as total
memory usage, per user session and/or per process. In other
embodiments, the monitoring service 198 and/or monitoring
agent 197 measures and monitors CPU usage the application
delivery system 190, such as total CPU usage, per user
session and/or per process. In another embodiments, the
monitoring service 198 and/or monitoring agent 197 mea-
sures and monitors the time required to log-in to an appli-
cation, a server, or the application delivery system, such as
Citrix Presentation Server. In one embodiment, the moni-
toring service 198 and/or monitoring agent 197 measures
and monitors the duration a user is logged into an applica-
tion, a server, or the application delivery system 190. In
some embodiments, the monitoring service 198 and/or
monitoring agent 197 measures and monitors active and
inactive session counts for an application, server or appli-
cation delivery system session. In yet another embodiment,
the monitoring service 198 and/or monitoring agent 197
measures and monitors user session latency.

In yet further embodiments, the monitoring service 198
and/or monitoring agent 197 measures and monitors mea-
sures and monitors any type and form of server metrics. In
one embodiment, the monitoring service 198 and/or moni-
toring agent 197 measures and monitors metrics related to
system memory, CPU usage, and disk storage. In another
embodiment, the monitoring service 198 and/or monitoring
agent 197 measures and monitors metrics related to page
faults, such as page faults per second. In other embodiments,
the monitoring service 198 and/or monitoring agent 197
measures and monitors round-trip time metrics. In yet
another embodiment, the monitoring service 198 and/or
monitoring agent 197 measures and monitors metrics related
to application crashes, errors and/or hangs.

In some embodiments, the monitoring service 198 and
monitoring agent 198 includes any of the product embodi-
ments referred to as EdgeSight manufactured by Citrix
Systems, Inc. of Ft. Lauderdale, Fla. In another embodiment,
the performance monitoring service 198 and/or monitoring
agent 198 includes any portion of the product embodiments
referred to as the TrueView product suite manufactured by
the Symphoniq Corporation of Palo Alto, Calif. In one
embodiment, the performance monitoring service 198 and/
or monitoring agent 198 includes any portion of the product
embodiments referred to as the Teal.eaf CX product suite
manufactured by the Teal.eaf Technology Inc. of San Fran-
cisco, Calif. In other embodiments, the performance moni-
toring service 198 and/or monitoring agent 198 includes any
portion of the business service management products, such
as the BMC Performance Manager and Patrol products,
manufactured by BMC Software, Inc. of Houston, Tex.

The client 102, server 106, and appliance 200 may be
deployed as and/or executed on any type and form of
computing device, such as a computer, network device or
appliance capable of communicating on any type and form
of network and performing the operations described herein.
FIGS. 1E and 1F depict block diagrams of a computing
device 100 useful for practicing an embodiment of the client
102, server 106 or appliance 200. As shown in FIGS. 1E and
1F, each computing device 100 includes a central processing
unit 101, and a main memory unit 122. As shown in FIG. 1E,

10

15

20

25

30

35

40

45

50

55

60

65

16

a computing device 100 may include a visual display device
124, a keyboard 126 and/or a pointing device 127, such as
a mouse. Each computing device 100 may also include
additional optional elements, such as one or more input/
output devices 130a-13056 (generally referred to using ref-
erence numeral 130), and a cache memory 140 in commu-
nication with the central processing unit 101.

The central processing unit 101 is any logic circuitry that
responds to and processes instructions fetched from the main
memory unit 122. In many embodiments, the central pro-
cessing unit is provided by a microprocessor unit, such as:
those manufactured by Intel Corporation of Mountain View,
Calif.; those manufactured by Motorola Corporation of
Schaumburg, I1l.; those manufactured by Transmeta Corpo-
ration of Santa Clara, Calif.; the RS/6000 processor, those
manufactured by International Business Machines of White
Plains, N.Y.; or those manufactured by Advanced Micro
Devices of Sunnyvale, Calif. The computing device 100
may be based on any of these processors, or any other
processor capable of operating as described herein.

Main memory unit 122 may be one or more memory chips
capable of storing data and allowing any storage location to
be directly accessed by the microprocessor 101, such as
Static random access memory (SRAM), Burst SRAM or
SynchBurst SRAM (BSRAM), Dynamic random access
memory (DRAM), Fast Page Mode DRAM (FPM DRAM),
Enhanced DRAM (EDRAM), Extended Data Output RAM
(EDO RAM), Extended Data Output DRAM (EDO
DRAM), Burst Extended Data Output DRAM (BEDO
DRAM), Enhanced DRAM (EDRAM), synchronous
DRAM (SDRAM), JEDEC SRAM, PC100 SDRAM,
Double Data Rate SDRAM (DDR SDRAM), Enhanced
SDRAM (ESDRAM), SyncLink DRAM (SLDRAM),
Direct Rambus DRAM (DRDRAM), or Ferroelectric RAM
(FRAM). The main memory 122 may be based on any of the
above described memory chips, or any other available
memory chips capable of operating as described herein. In
the embodiment shown in FIG. 1E, the processor 101
communicates with main memory 122 via a system bus 150
(described in more detail below). FIG. 1F depicts an
embodiment of a computing device 100 in which the pro-
cessor communicates directly with main memory 122 via a
memory port 103. For example, in FIG. 1F the main memory
122 may be DRDRAM.

FIG. 1F depicts an embodiment in which the main pro-
cessor 101 communicates directly with cache memory 140
via a secondary bus, sometimes referred to as a backside bus.
In other embodiments, the main processor 101 communi-
cates with cache memory 140 using the system bus 150.
Cache memory 140 typically has a faster response time than
main memory 122 and is typically provided by SRAM,
BSRAM, or EDRAM. In the embodiment shown in FIG. 1F,
the processor 101 communicates with various I/O devices
130 via a local system bus 150. Various busses may be used
to connect the central processing unit 101 to any of the I/O
devices 130, including a VESA VL bus, an ISA bus, an EISA
bus, a MicroChannel Architecture (MCA) bus, a PCI bus, a
PCI-X bus, a PCI-Express bus, or a NuBus. For embodi-
ments in which the /O device is a video display 124, the
processor 101 may use an Advanced Graphics Port (AGP) to
communicate with the display 124. FIG. 1F depicts an
embodiment of a computer 100 in which the main processor
101 communicates directly with I/O device 1305 via Hyper-
Transport, Rapid I/O, or InfiniBand. FIG. 1F also depicts an
embodiment in which local busses and direct communica-
tion are mixed: the processor 101 communicates with 1/O

US 9,461,996 B2

17

device 1305 using a local interconnect bus while commu-
nicating with /O device 130qa directly.

The computing device 100 may support any suitable
installation device 116, such as a floppy disk drive for
receiving floppy disks such as 3.5-inch, 5.25-inch disks or
Z1P disks, a CD-ROM drive, a CD-R/RW drive, a DVD-
ROM drive, tape drives of various formats, USB device,
hard-drive or any other device suitable for installing soft-
ware and programs such as any client agent 120, or portion
thereof. The computing device 100 may further comprise a
storage device 128, such as one or more hard disk drives or
redundant arrays of independent disks, for storing an oper-
ating system and other related software, and for storing
application software programs such as any program related
to the client agent 120. Optionally, any of the installation
devices 116 could also be used as the storage device 128.
Additionally, the operating system and the software can be
run from a bootable medium, for example, a bootable CD,
such as KNOPPIX®, a bootable CD for GNU/Linux that is
available as a GNU/Linux distribution from knoppix.net.

Furthermore, the computing device 100 may include a
network interface 118 to interface to a Local Area Network
(LAN), Wide Area Network (WAN) or the Internet through
a variety of connections including, but not limited to,
standard telephone lines, LAN or WAN links (e.g., 802.11,
T1, T3, 56 kb, X.25), broadband connections (e.g., ISDN,
Frame Relay, ATM), wireless connections, or some combi-
nation of any or all of the above. The network interface 118
may comprise a built-in network adapter, network interface
card, PCMCIA network card, card bus network adapter,
wireless network adapter, USB network adapter, modem or
any other device suitable for interfacing the computing
device 100 to any type of network capable of communica-
tion and performing the operations described herein.

A wide variety of /O devices 130a-1307 may be present
in the computing device 100. Input devices include key-
boards, mice, trackpads, trackballs, microphones, and draw-
ing tablets. Output devices include video displays, speakers,
inkjet printers, laser printers, and dye-sublimation printers.
The I/O devices 130 may be controlled by an /O controller
123 as shown in FIG. 1E. The I/O controller may control one
or more [/O devices such as a keyboard 126 and a pointing
device 127, e.g., a mouse or optical pen. Furthermore, an [/O
device may also provide storage 128 and/or an installation
medium 116 for the computing device 100. In still other
embodiments, the computing device 100 may provide USB
connections to receive handheld USB storage devices such
as the USB Flash Drive line of devices manufactured by
Twintech Industry, Inc. of Los Alamitos, Calif.

In some embodiments, the computing device 100 may
comprise or be connected to multiple display devices 124a-
124n, which each may be of the same or different type and/or
form. As such, any of the /O devices 130a-130# and/or the
1/O controller 123 may comprise any type and/or form of
suitable hardware, software, or combination of hardware and
software to support, enable or provide for the connection and
use of multiple display devices 124a-124r by the computing
device 100. For example, the computing device 100 may
include any type and/or form of video adapter, video card,
driver, and/or library to interface, communicate, connect or
otherwise use the display devices 124a-124n. In one
embodiment, a video adapter may comprise multiple con-
nectors to interface to multiple display devices 124a-124n.
In other embodiments, the computing device 100 may
include multiple video adapters, with each video adapter
connected to one or more of the display devices 124a-124n.
In some embodiments, any portion of the operating system

40

45

50

18

of the computing device 100 may be configured for using
multiple displays 124a-124%. In other embodiments, one or
more of the display devices 124a-124n may be provided by
one or more other computing devices, such as computing
devices 100a and 1005 connected to the computing device
100, for example, via a network. These embodiments may
include any type of software designed and constructed to use
another computer’s display device as a second display
device 124a for the computing device 100. One ordinarily
skilled in the art will recognize and appreciate the various
ways and embodiments that a computing device 100 may be
configured to have multiple display devices 124a-124n.

In further embodiments, an /O device 130 may be a
bridge 170 between the system bus 150 and an external
communication bus, such as a USB bus, an Apple Desktop
Bus, an RS-232 serial connection, a SCSI bus, a FireWire
bus, a FireWire 800 bus, an Ethernet bus, an AppleTalk bus,
a Gigabit Ethernet bus, an Asynchronous Transfer Mode
bus, a HIPPI bus, a Super HIPPI bus, a SerialPlus bus, a
SCI/LAMP bus, a FibreChannel bus, or a Serial Attached
small computer system interface bus.

A computing device 100 of the sort depicted in FIGS. 1E
and 1F typically operate under the control of operating
systems, which control scheduling of tasks and access to
system resources. The computing device 100 can be running
any operating system such as any of the versions of the
Microsoft® Windows operating systems, the different
releases of the Unix and Linux operating systems, any
version of the Mac OS® for Macintosh computers, any
embedded operating system, any real-time operating system,
any open source operating system, any proprietary operating
system, any operating systems for mobile computing
devices, or any other operating system capable of running on
the computing device and performing the operations
described herein. Typical operating systems include: WIN-
DOWS 3.x, WINDOWS 95, WINDOWS 98, WINDOWS
2000, WINDOWS NT 3.51, WINDOWS NT 4.0, WIN-
DOWS CE, and WINDOWS XP, all of which are manufac-
tured by Microsoft Corporation of Redmond, Wash.;
MacOS, manufactured by Apple Computer of Cupertino,
Calif.; OS/2, manufactured by International Business
Machines of Armonk, N.Y.; and Linux, a freely-available
operating system distributed by Caldera Corp. of Salt Lake
City, Utah, or any type and/or form of a Unix operating
system, among others.

In other embodiments, the computing device 100 may
have different processors, operating systems, and input
devices consistent with the device. For example, in one
embodiment the computer 100 is a Treo 180, 270, 1060, 600
or 650 smart phone manufactured by Palm, Inc. In this
embodiment, the Treo smart phone is operated under the
control of the PalmOS operating system and includes a
stylus input device as well as a five-way navigator device.
Moreover, the computing device 100 can be any worksta-
tion, desktop computer, laptop or notebook computer, server,
handheld computer, mobile telephone, any other computer,
or other form of computing or telecommunications device
that is capable of communication and that has sufficient
processor power and memory capacity to perform the opera-
tions described herein.

As shown in FIG. 1G, the computing device 100 may
comprise multiple processors and may provide functionality
for simultaneous execution of instructions or for simultane-
ous execution of one instruction on more than one piece of
data. In some embodiments, the computing device 100 may
comprise a parallel processor with one or more cores. In one
of these embodiments, the computing device 100 is a shared

US 9,461,996 B2

19

memory parallel device, with multiple processors and/or
multiple processor cores, accessing all available memory as
a single global address space. In another of these embodi-
ments, the computing device 100 is a distributed memory
parallel device with multiple processors each accessing local
memory only. In still another of these embodiments, the
computing device 100 has both some memory which is
shared and some memory which can only be accessed by
particular processors or subsets of processors. In still even
another of these embodiments, the computing device 100,
such as a multi-core microprocessor, combines two or more
independent processors into a single package, often a single
integrated circuit (IC). In yet another of these embodiments,
the computing device 100 includes a chip having a CELL
BROADBAND ENGINE architecture and including a
Power processor element and a plurality of synergistic
processing elements, the Power processor element and the
plurality of synergistic processing elements linked together
by an internal high speed bus, which may be referred to as
an element interconnect bus.

In some embodiments, the processors provide function-
ality for execution of a single instruction simultaneously on
multiple pieces of data (SIMD). In other embodiments, the
processors provide functionality for execution of multiple
instructions simultaneously on multiple pieces of data
(MIMD). In still other embodiments, the processor may use
any combination of SIMD and MIMD cores in a single
device.

In some embodiments, the computing device 100 may
comprise a graphics processing unit. In one of these embodi-
ments, depicted in FIG. 1H, the computing device 100
includes at least one central processing unit 101 and at least
one graphics processing unit. In another of these embodi-
ments, the computing device 100 includes at least one
parallel processing unit and at least one graphics processing
unit. In still another of these embodiments, the computing
device 100 includes a plurality of processing units of any
type, one of the plurality of processing units comprising a
graphics processing unit.

In some embodiments, a first computing device 100a
executes an application on behalf of a user of a client
computing device 1005. In other embodiments, a computing
device 100a executes a virtual machine, which provides an
execution session within which applications execute on
behalf of a user or a client computing devices 1005. In one
of these embodiments, the execution session is a hosted
desktop session. In another of these embodiments, the
computing device 100 executes a terminal services session.
The terminal services session may provide a hosted desktop
environment. In still another of these embodiments, the
execution session provides access to a computing environ-
ment, which may comprise one or more of: an application,
a plurality of applications, a desktop application, and a
desktop session in which one or more applications may
execute.

B. Appliance Architecture

FIG. 2A illustrates an example embodiment of the appli-
ance 200. The architecture of the appliance 200 in FIG. 2A
is provided by way of illustration only and is not intended to
be limiting. As shown in FIG. 2, appliance 200 comprises a
hardware layer 206 and a software layer divided into a user
space 202 and a kernel space 204.

Hardware layer 206 provides the hardware elements upon
which programs and services within kernel space 204 and
user space 202 are executed. Hardware layer 206 also
provides the structures and elements which allow programs
and services within kernel space 204 and user space 202 to

10

15

20

25

30

35

40

45

50

55

60

65

20

communicate data both internally and externally with
respect to appliance 200. As shown in FIG. 2, the hardware
layer 206 includes a processing unit 262 for executing
software programs and services, a memory 264 for storing
software and data, network ports 266 for transmitting and
receiving data over a network, and an encryption processor
260 for performing functions related to Secure Sockets
Layer processing of data transmitted and received over the
network. In some embodiments, the central processing unit
262 may perform the functions of the encryption processor
260 in a single processor. Additionally, the hardware layer
206 may comprise multiple processors for each of the
processing unit 262 and the encryption processor 260. The
processor 262 may include any of the processors 101
described above in connection with FIGS. 1E and 1F. For
example, in one embodiment, the appliance 200 comprises
a first processor 262 and a second processor 262'. In other
embodiments, the processor 262 or 262' comprises a multi-
core processor.

Although the hardware layer 206 of appliance 200 is
generally illustrated with an encryption processor 260, pro-
cessor 260 may be a processor for performing functions
related to any encryption protocol, such as the Secure Socket
Layer (SSL) or Transport Layer Security (TLS) protocol. In
some embodiments, the processor 260 may be a general
purpose processor (GPP), and in further embodiments, may
have executable instructions for performing processing of
any security related protocol.

Although the hardware layer 206 of appliance 200 is
illustrated with certain elements in FIG. 2, the hardware
portions or components of appliance 200 may comprise any
type and form of elements, hardware or software, of a
computing device, such as the computing device 100 illus-
trated and discussed herein in conjunction with FIGS. 1E
and 1F. In some embodiments, the appliance 200 may
comprise a server, gateway, router, switch, bridge or other
type of computing or network device, and have any hard-
ware and/or software elements associated therewith.

The operating system of appliance 200 allocates, man-
ages, or otherwise segregates the available system memory
into kernel space 204 and user space 204. In example
software architecture 200, the operating system may be any
type and/or form of Unix operating system although the
invention is not so limited. As such, the appliance 200 can
be running any operating system such as any of the versions
of the Microsoft® Windows operating systems, the different
releases of the Unix and Linux operating systems, any
version of the Mac OS® for Macintosh computers, any
embedded operating system, any network operating system,
any real-time operating system, any open source operating
system, any proprietary operating system, any operating
systems for mobile computing devices or network devices,
or any other operating system capable of running on the
appliance 200 and performing the operations described
herein.

The kernel space 204 is reserved for running the kernel
230, including any device drivers, kernel extensions or other
kernel related software. As known to those skilled in the art,
the kernel 230 is the core of the operating system, and
provides access, control, and management of resources and
hardware-related elements of the application 104. In accor-
dance with an embodiment of the appliance 200, the kernel
space 204 also includes a number of network services or
processes working in conjunction with a cache manager 232,
sometimes also referred to as the integrated cache, the
benefits of which are described in detail further herein.
Additionally, the embodiment of the kernel 230 will depend

US 9,461,996 B2

21

on the embodiment of the operating system installed, con-
figured, or otherwise used by the device 200.

In one embodiment, the device 200 comprises one net-
work stack 267, such as a TCP/IP based stack, for commu-
nicating with the client 102 and/or the server 106. In one
embodiment, the network stack 267 is used to communicate
with a first network, such as network 108, and a second
network 110. In some embodiments, the device 200 termi-
nates a first transport layer connection, such as a TCP
connection of a client 102, and establishes a second transport
layer connection to a server 106 for use by the client 102,
e.g., the second transport layer connection is terminated at
the appliance 200 and the server 106. The first and second
transport layer connections may be established via a single
network stack 267. In other embodiments, the device 200
may comprise multiple network stacks, for example 267 and
267", and the first transport layer connection may be estab-
lished or terminated at one network stack 267, and the
second transport layer connection on the second network
stack 267'. For example, one network stack may be for
receiving and transmitting network packet on a first net-
work, and another network stack for receiving and trans-
mitting network packets on a second network. In one
embodiment, the network stack 267 comprises a buffer 243
for queuing one or more network packets for transmission
by the appliance 200.

As shown in FIG. 2A, the kernel space 204 includes the
cache manager 232, a high-speed layer 2-7 integrated packet
engine 240, an encryption engine 234, a policy engine 236
and multi-protocol compression logic 238. Running these
components or processes 232, 240, 234, 236 and 238 in
kernel space 204 or kernel mode instead of the user space
202 improves the performance of each of these components,
alone and in combination. Kernel operation means that these
components or processes 232, 240, 234, 236 and 238 run in
the core address space of the operating system of the device
200. For example, running the encryption engine 234 in
kernel mode improves encryption performance by moving
encryption and decryption operations to the kernel, thereby
reducing the number of transitions between the memory
space or a kernel thread in kernel mode and the memory
space or a thread in user mode. For example, data obtained
in kernel mode may not need to be passed or copied to a
process or thread running in user mode, such as from a
kernel level data structure to a user level data structure. In
another aspect, the number of context switches between
kernel mode and user mode are also reduced. Additionally,
synchronization of and communications between any of the
components or processes 232, 240, 235, 236 and 238 can be
performed more efficiently in the kernel space 204.

In some embodiments, any portion of the components
232, 240, 234, 236 and 238 may run or operate in the kernel
space 204, while other portions of these components 232,
240, 234, 236 and 238 may run or operate in user space 202.
In one embodiment, the appliance 200 uses a kernel-level
data structure providing access to any portion of one or more
network packets, for example, a network packet comprising
a request from a client 102 or a response from a server 106.
In some embodiments, the kernel-level data structure may
be obtained by the packet engine 240 via a transport layer
driver interface or filter to the network stack 267. The
kernel-level data structure may comprise any interface and/
or data accessible via the kernel space 204 related to the
network stack 267, network traffic or packets received or
transmitted by the network stack 267. In other embodiments,
the kernel-level data structure may be used by any of the
components or processes 232, 240, 234, 236 and 238 to

10

15

20

25

30

35

40

45

50

55

60

65

22

perform the desired operation of the component or process.
In one embodiment, a component 232, 240, 234, 236 and
238 is running in kernel mode 204 when using the kernel-
level data structure, while in another embodiment, the
component 232, 240, 234, 236 and 238 is running in user
mode when using the kernel-level data structure. In some
embodiments, the kernel-level data structure may be copied
or passed to a second kernel-level data structure, or any
desired user-level data structure.

The cache manager 232 may comprise software, hardware
or any combination of software and hardware to provide
cache access, control and management of any type and form
of content, such as objects or dynamically generated objects
served by the originating servers 106. The data, objects or
content processed and stored by the cache manager 232 may
comprise data in any format, such as a markup language, or
communicated via any protocol. In some embodiments, the
cache manager 232 duplicates original data stored elsewhere
or data previously computed, generated or transmitted, in
which the original data may require longer access time to
fetch, compute or otherwise obtain relative to reading a
cache memory element. Once the data is stored in the cache
memory element, future use can be made by accessing the
cached copy rather than refetching or recomputing the
original data, thereby reducing the access time. In some
embodiments, the cache memory element may comprise a
data object in memory 264 of device 200. In other embodi-
ments, the cache memory element may comprise memory
having a faster access time than memory 264. In another
embodiment, the cache memory element may comprise any
type and form of storage element of the device 200, such as
a portion of a hard disk. In some embodiments, the process-
ing unit 262 may provide cache memory for use by the cache
manager 232. In yet further embodiments, the cache man-
ager 232 may use any portion and combination of memory,
storage, or the processing unit for caching data, objects, and
other content.

Furthermore, the cache manager 232 includes any logic,
functions, rules, or operations to perform any embodiments
of the techniques of the appliance 200 described herein. For
example, the cache manager 232 includes logic or function-
ality to invalidate objects based on the expiration of an
invalidation time period or upon receipt of an invalidation
command from a client 102 or server 106. In some embodi-
ments, the cache manager 232 may operate as a program,
service, process or task executing in the kernel space 204,
and in other embodiments, in the user space 202. In one
embodiment, a first portion of the cache manager 232
executes in the user space 202 while a second portion
executes in the kernel space 204. In some embodiments, the
cache manager 232 can comprise any type of general
purpose processor (GPP), or any other type of integrated
circuit, such as a Field Programmable Gate Array (FPGA),
Programmable Logic Device (PLD), or Application Specific
Integrated Circuit (ASIC).

The policy engine 236 may include, for example, an
intelligent statistical engine or other programmable applica-
tion(s). In one embodiment, the policy engine 236 provides
a configuration mechanism to allow a user to identify,
specify, define or configure a caching policy. Policy engine
236, in some embodiments, also has access to memory to
support data structures such as lookup tables or hash tables
to enable user-selected caching policy decisions. In other
embodiments, the policy engine 236 may comprise any
logic, rules, functions or operations to determine and pro-
vide access, control and management of objects, data or
content being cached by the appliance 200 in addition to

US 9,461,996 B2

23

access, control and management of security, network traffic,
network access, compression or any other function or opera-
tion performed by the appliance 200. Further examples of
specific caching policies are further described herein.

The encryption engine 234 comprises any logic, business
rules, functions or operations for handling the processing of
any security related protocol, such as SSL or TLS, or any
function related thereto. For example, the encryption engine
234 encrypts and decrypts network packets, or any portion
thereof, communicated via the appliance 200. The encryp-
tion engine 234 may also setup or establish SSL or TLS
connections on behalf of the client 102a-102#, server 106a-
106n, or appliance 200. As such, the encryption engine 234
provides offloading and acceleration of SSL processing. In
one embodiment, the encryption engine 234 uses a tunneling
protocol to provide a virtual private network between a
client 102a-1027 and a server 106a-106x. In some embodi-
ments, the encryption engine 234 is in communication with
the Encryption processor 260. In other embodiments, the
encryption engine 234 comprises executable instructions
running on the Encryption processor 260.

The multi-protocol compression engine 238 comprises
any logic, business rules, function or operations for com-
pressing one or more protocols of a network packet, such as
any of the protocols used by the network stack 267 of the
device 200. In one embodiment, multi-protocol compression
engine 238 compresses bi-directionally between clients
102a-1027 and servers 106a-106» any TCP/IP based pro-
tocol, including Messaging Application Programming Inter-
face (MAPI) (email), File Transfer Protocol (FTP), Hyper-
Text Transfer Protocol (HTTP), Common Internet File
System (CIFS) protocol (file transfer), Independent Com-
puting Architecture (ICA) protocol, Remote Desktop Pro-
tocol (RDP), Wireless Application Protocol (WAP), Mobile
IP protocol, and Voice Over IP (VoIP) protocol. In other
embodiments, multi-protocol compression engine 238 pro-
vides compression of Hypertext Markup Language (HTML)
based protocols and in some embodiments, provides com-
pression of any markup languages, such as the Extensible
Markup Language (XML). In one embodiment, the multi-
protocol compression engine 238 provides compression of
any high-performance protocol, such as any protocol
designed for appliance 200 to appliance 200 communica-
tions. In another embodiment, the multi-protocol compres-
sion engine 238 compresses any payload of or any commu-
nication using a modified transport control protocol, such as
Transaction TCP (T/TCP), TCP with selection acknowl-
edgements (TCP-SACK), TCP with large windows (TCP-
LW), a congestion prediction protocol such as the TCP-
Vegas protocol, and a TCP spoofing protocol.

As such, the multi-protocol compression engine 238
accelerates performance for users accessing applications via
desktop clients, e.g., Microsoft Outlook and non-Web thin
clients, such as any client launched by popular enterprise
applications like Oracle, SAP and Siebel, and even mobile
clients, such as the Pocket PC. In some embodiments, the
multi-protocol compression engine 238 by executing in the
kernel mode 204 and integrating with packet processing
engine 240 accessing the network stack 267 is able to
compress any of the protocols carried by the TCP/IP proto-
col, such as any application layer protocol.

High speed layer 2-7 integrated packet engine 240, also
generally referred to as a packet processing engine or packet
engine, is responsible for managing the kernel-level pro-
cessing of packets received and transmitted by appliance
200 via network ports 266. The high speed layer 2-7
integrated packet engine 240 may comprise a buffer for

40

45

50

55

24

queuing one or more network packets during processing,
such as for receipt of a network packet or transmission of a
network packet. Additionally, the high speed layer 2-7
integrated packet engine 240 is in communication with one
or more network stacks 267 to send and receive network
packets via network ports 266. The high speed layer 2-7
integrated packet engine 240 works in conjunction with
encryption engine 234, cache manager 232, policy engine
236 and multi-protocol compression logic 238. In particular,
encryption engine 234 is configured to perform SSL pro-
cessing of packets, policy engine 236 is configured to
perform functions related to traffic management such as
request-level content switching and request-level cache redi-
rection, and multi-protocol compression logic 238 is con-
figured to perform functions related to compression and
decompression of data.

The high speed layer 2-7 integrated packet engine 240
includes a packet processing timer 242. In one embodiment,
the packet processing timer 242 provides one or more time
intervals to trigger the processing of incoming, e.g.,
received, or outgoing, i.e., transmitted, network packets. In
some embodiments, the high speed layer 2-7 integrated
packet engine 240 processes network packets responsive to
the timer 242. The packet processing timer 242 provides any
type and form of signal to the packet engine 240 to notify,
trigger, or communicate a time related event, interval or
occurrence. In many embodiments, the packet processing
timer 242 operates in the order of milliseconds, such as for
example 100 ms, 50 ms or 25 ms. For example, in some
embodiments, the packet processing timer 242 provides time
intervals or otherwise causes a network packet to be pro-
cessed by the high speed layer 2-7 integrated packet engine
240 at a 10 ms time interval, while in other embodiments, at
a 5 ms time interval, and still yet in further embodiments, as
short as a 3, 2, or 1 ms time interval. The high speed layer
2-7 integrated packet engine 240 may be interfaced, inte-
grated or in communication with the encryption engine 234,
cache manager 232, policy engine 236 and multi-protocol
compression engine 238 during operation. As such, any of
the logic, functions, or operations of the encryption engine
234, cache manager 232, policy engine 236 and multi-
protocol compression logic 238 may be performed respon-
sive to the packet processing timer 242 and/or the packet
engine 240. Therefore, any of the logic, functions, or opera-
tions of the encryption engine 234, cache manager 232,
policy engine 236 and multi-protocol compression logic 238
may be performed at the granularity of time intervals
provided via the packet processing timer 242, for example,
at atime interval of less than or equal to 10 ms. For example,
in one embodiment, the cache manager 232 may perform
invalidation of any cached objects responsive to the high
speed layer 2-7 integrated packet engine 240 and/or the
packet processing timer 242. In another embodiment, the
expiry or invalidation time of a cached object can be set to
the same order of granularity as the time interval of the
packet processing timer 242, such as at every 10 ms.

In contrast to kernel space 204, user space 202 is the
memory area or portion of the operating system used by user
mode applications or programs otherwise running in user
mode. A user mode application may not access kernel space
204 directly and uses service calls in order to access kernel
services. As shown in FIG. 2, user space 202 of appliance
200 includes a graphical user interface (GUI) 210, a com-
mand line interface (CLI) 212, shell services 214, health
monitoring program 216, and daemon services 218. GUI
210 and CLI 212 provide a means by which a system
administrator or other user can interact with and control the

US 9,461,996 B2

25

operation of appliance 200, such as via the operating system
of'the appliance 200. The GUI 210 or CLI 212 can comprise
code running in user space 202 or kernel space 204. The GUI
210 may be any type and form of graphical user interface
and may be presented via text, graphical or otherwise, by
any type of program or application, such as a browser. The
CLI 212 may be any type and form of command line or
text-based interface, such as a command line provided by the
operating system. For example, the CLI 212 may comprise
a shell, which is a tool to enable users to interact with the
operating system. In some embodiments, the CLI 212 may
be provided via a bash, csh, tcsh, or ksh type shell. The shell
services 214 comprises the programs, services, tasks, pro-
cesses or executable instructions to support interaction with
the appliance 200 or operating system by a user via the GUI
210 and/or CLI 212.

Health monitoring program 216 is used to monitor, check,
report and ensure that network systems are functioning
properly and that users are receiving requested content over
a network. Health monitoring program 216 comprises one or
more programs, services, tasks, processes or executable
instructions to provide logic, rules, functions or operations
for monitoring any activity of the appliance 200. In some
embodiments, the health monitoring program 216 intercepts
and inspects any network traffic passed via the appliance
200. In other embodiments, the health monitoring program
216 interfaces by any suitable means and/or mechanisms
with one or more of the following: the encryption engine
234, cache manager 232, policy engine 236, multi-protocol
compression logic 238, packet engine 240, daemon services
218, and shell services 214. As such, the health monitoring
program 216 may call any application programming inter-
face (API) to determine a state, status, or health of any
portion of the appliance 200. For example, the health
monitoring program 216 may ping or send a status inquiry
on a periodic basis to check if a program, process, service or
task is active and currently running. In another example, the
health monitoring program 216 may check any status, error
or history logs provided by any program, process, service or
task to determine any condition, status or error with any
portion of the appliance 200.

Daemon services 218 are programs that run continuously
or in the background and handle periodic service requests
received by appliance 200. In some embodiments, a daemon
service may forward the requests to other programs or
processes, such as another daemon service 218 as appropri-
ate. As known to those skilled in the art, a daemon service
218 may run unattended to perform continuous or periodic
system wide functions, such as network control, or to
perform any desired task. In some embodiments, one or
more daemon services 218 run in the user space 202, while
in other embodiments, one or more daemon services 218 run
in the kernel space.

Referring now to FIG. 2B, another embodiment of the
appliance 200 is depicted. In brief overview, the appliance
200 provides one or more of the following services, func-
tionality or operations: SSL. VPN connectivity 280, switch-
ing/load balancing 284, Domain Name Service resolution
286, acceleration 288 and an application firewall 290 for
communications between one or more clients 102 and one or
more servers 106. Each of the servers 106 may provide one
or more network related services 270a-270r (referred to as
services 270). For example, a server 106 may provide an http
service 270. The appliance 200 comprises one or more
virtual servers or virtual internet protocol servers, referred to
as a vServer, VIP server, or just VIP 2754-275n (also
referred herein as vServer 275). The vServer 275 receives,

10

15

20

25

30

35

40

45

55

60

65

26

intercepts or otherwise processes communications between
a client 102 and a server 106 in accordance with the
configuration and operations of the appliance 200.

The vServer 275 may comprise software, hardware or any
combination of software and hardware. The vServer 275
may comprise any type and form of program, service, task,
process or executable instructions operating in user mode
202, kernel mode 204 or any combination thereof in the
appliance 200. The vServer 275 includes any logic, func-
tions, rules, or operations to perform any embodiments of
the techniques described herein, such as SSL. VPN 280,
switching/load balancing 284, Domain Name Service reso-
Iution 286, acceleration 288 and an application firewall 290.
In some embodiments, the vServer 275 establishes a con-
nection to a service 270 of a server 106. The service 275 may
comprise any program, application, process, task or set of
executable instructions capable of connecting to and com-
municating to the appliance 200, client 102 or vServer 275.
For example, the service 275 may comprise a web server,
http server, ftp, email or database server. In some embodi-
ments, the service 270 is a daemon process or network driver
for listening, receiving and/or sending communications for
an application, such as email, database or an enterprise
application. In some embodiments, the service 270 may
communicate on a specific IP address, or IP address and port.

In some embodiments, the vServer 275 applies one or
more policies of the policy engine 236 to network commu-
nications between the client 102 and server 106. In one
embodiment, the policies are associated with a vServer 275.
In another embodiment, the policies are based on a user, or
a group of users. In yet another embodiment, a policy is
global and applies to one or more vServers 275a-275n, and
any user or group of users communicating via the appliance
200. In some embodiments, the policies of the policy engine
have conditions upon which the policy is applied based on
any content of the communication, such as internet protocol
address, port, protocol type, header or fields in a packet, or
the context of the communication, such as user, group of the
user, vServer 275, transport layer connection, and/or iden-
tification or attributes of the client 102 or server 106.

In other embodiments, the appliance 200 communicates
or interfaces with the policy engine 236 to determine authen-
tication and/or authorization of a remote user or a remote
client 102 to access the computing environment 15, appli-
cation, and/or data file from a server 106. In another embodi-
ment, the appliance 200 communicates or interfaces with the
policy engine 236 to determine authentication and/or autho-
rization of a remote user or a remote client 102 to have the
application delivery system 190 deliver one or more of the
computing environment 15, application, and/or data file. In
yet another embodiment, the appliance 200 establishes a
VPN or SSL VPN connection based on the policy engine’s
236 authentication and/or authorization of a remote user or
a remote client 102 In one embodiment, the appliance 200
controls the flow of network traffic and communication
sessions based on policies of the policy engine 236. For
example, the appliance 200 may control the access to a
computing environment 15, application or data file based on
the policy engine 236.

In some embodiments, the vServer 275 establishes a
transport layer connection, such as a TCP or UDP connec-
tion with a client 102 via the client agent 120. In one
embodiment, the vServer 275 listens for and receives com-
munications from the client 102. In other embodiments, the
vServer 275 establishes a transport layer connection, such as
a TCP or UDP connection with a client server 106. In one
embodiment, the vServer 275 establishes the transport layer

US 9,461,996 B2

27

connection to an internet protocol address and port of a
server 270 running on the server 106. In another embodi-
ment, the vServer 275 associates a first transport layer
connection to a client 102 with a second transport layer
connection to the server 106. In some embodiments, a
vServer 275 establishes a pool of transport layer connections
to a server 106 and multiplexes client requests via the pooled
transport layer connections.

In some embodiments, the appliance 200 provides a SSL
VPN connection 280 between a client 102 and a server 106.
For example, a client 102 on a first network 102 requests to
establish a connection to a server 106 on a second network
104'. In some embodiments, the second network 104' is not
routable from the first network 104. In other embodiments,
the client 102 is on a public network 104 and the server 106
is on a private network 104', such as a corporate network. In
one embodiment, the client agent 120 intercepts communi-
cations of the client 102 on the first network 104, encrypts
the communications, and transmits the communications via
a first transport layer connection to the appliance 200. The
appliance 200 associates the first transport layer connection
on the first network 104 to a second transport layer connec-
tion to the server 106 on the second network 104. The
appliance 200 receives the intercepted communication from
the client agent 102, decrypts the communications, and
transmits the communication to the server 106 on the second
network 104 via the second transport layer connection. The
second transport layer connection may be a pooled transport
layer connection. As such, the appliance 200 provides an
end-to-end secure transport layer connection for the client
102 between the two networks 104, 104'.

In one embodiment, the appliance 200 hosts an intranet
internet protocol or IntranetIP 282 address of the client 102
on the virtual private network 104. The client 102 has a local
network identifier, such as an internet protocol (IP) address
and/or host name on the first network 104. When connected
to the second network 104' via the appliance 200, the
appliance 200 establishes, assigns or otherwise provides an
IntranetIP address 282, which is a network identifier, such as
IP address and/or host name, for the client 102 on the second
network 104'. The appliance 200 listens for and receives on
the second or private network 104' for any communications
directed towards the client 102 using the client’s established
IntranetIP 282. In one embodiment, the appliance 200 acts
as or on behalf of the client 102 on the second private
network 104. For example, in another embodiment, a
vServer 275 listens for and responds to communications to
the IntranetIP 282 of the client 102. In some embodiments,
if a computing device 100 on the second network 104'
transmits a request, the appliance 200 processes the request
as if it were the client 102. For example, the appliance 200
may respond to a ping to the client’s IntranetIP 282. In
another example, the appliance may establish a connection,
such as a TCP or UDP connection, with computing device
100 on the second network 104 requesting a connection with
the client’s IntranetIP 282.

In some embodiments, the appliance 200 provides one or
more of the following acceleration techniques 288 to com-
munications between the client 102 and server 106: 1)
compression; 2) decompression; 3) Transmission Control
Protocol pooling; 4) Transmission Control Protocol multi-
plexing; 5) Transmission Control Protocol buffering; and 6)
caching. In one embodiment, the appliance 200 relieves
servers 106 of much of the processing load caused by
repeatedly opening and closing transport layers connections
to clients 102 by opening one or more transport layer
connections with each server 106 and maintaining these

5

10

15

20

25

30

35

40

45

50

55

60

65

28

connections to allow repeated data accesses by clients via
the Internet. This technique is referred to herein as “con-
nection pooling”.

In some embodiments, in order to seamlessly splice
communications from a client 102 to a server 106 via a
pooled transport layer connection, the appliance 200 trans-
lates or multiplexes communications by modifying sequence
number and acknowledgment numbers at the transport layer
protocol level. This is referred to as “connection multiplex-
ing”. In some embodiments, no application layer protocol
interaction is required. For example, in the case of an
in-bound packet (that is, a packet received from a client
102), the source network address of the packet is changed to
that of an output port of appliance 200, and the destination
network address is changed to that of the intended server. In
the case of an outbound packet (that is, one received from a
server 106), the source network address is changed from that
of the server 106 to that of an output port of appliance 200
and the destination address is changed from that of appliance
200 to that of the requesting client 102. The sequence
numbers and acknowledgment numbers of the packet are
also translated to sequence numbers and acknowledgement
numbers expected by the client 102 on the appliance’s 200
transport layer connection to the client 102. In some embodi-
ments, the packet checksum of the transport layer protocol
is recalculated to account for these translations.

In another embodiment, the appliance 200 provides
switching or load-balancing functionality 284 for commu-
nications between the client 102 and server 106. In some
embodiments, the appliance 200 distributes traffic and
directs client requests to a server 106 based on layer 4 or
application-layer request data. In one embodiment, although
the network layer or layer 2 of the network packet identifies
a destination server 106, the appliance 200 determines the
server 106 to distribute the network packet by application
information and data carried as payload of the transport
layer packet. In one embodiment, the health monitoring
programs 216 of the appliance 200 monitor the health of
servers to determine the server 106 for which to distribute a
client’s request. In some embodiments, if the appliance 200
detects a server 106 is not available or has a load over a
predetermined threshold, the appliance 200 can direct or
distribute client requests to another server 106.

In some embodiments, the appliance 200 acts as a Domain
Name Service (DNS) resolver or otherwise provides reso-
Iution of a DNS request from clients 102. In some embodi-
ments, the appliance intercepts a DNS request transmitted
by the client 102. In one embodiment, the appliance 200
responds to a client’s DNS request with an IP address of or
hosted by the appliance 200. In this embodiment, the client
102 transmits network communication for the domain name
to the appliance 200. In another embodiment, the appliance
200 responds to a client’s DNS request with an IP address
of or hosted by a second appliance 200'. In some embodi-
ments, the appliance 200 responds to a client’s DNS request
with an IP address of a server 106 determined by the
appliance 200.

In yet another embodiment, the appliance 200 provides
application firewall functionality 290 for communications
between the client 102 and server 106. In one embodiment,
the policy engine 236 provides rules for detecting and
blocking illegitimate requests. In some embodiments, the
application firewall 290 protects against denial of service
(DoS) attacks. In other embodiments, the appliance inspects
the content of intercepted requests to identify and block
application-based attacks. In some embodiments, the rules/
policy engine 236 comprises one or more application fire-

US 9,461,996 B2

29

wall or security control policies for providing protections
against various classes and types of web or Internet based
vulnerabilities, such as one or more of the following: 1)
buffer overflow, 2) CGI-BIN parameter manipulation, 3)
form/hidden field manipulation, 4) forceful browsing, 5)
cookie or session poisoning, 6) broken access control list
(ACLs) or weak passwords, 7) cross-site scripting (XSS), 8)
command injection, 9) SQL injection, 10) error triggering
sensitive information leak, 11) insecure use of cryptography,
12) server misconfiguration, 13) back doors and debug
options, 14) website defacement, 15) platform or operating
systems vulnerabilities, and 16) zero-day exploits. In an
embodiment, the application firewall 290 provides HTML
form field protection in the form of inspecting or analyzing
the network communication for one or more of the follow-
ing: 1) required fields are returned, 2) no added field
allowed, 3) read-only and hidden field enforcement, 4)
drop-down list and radio button field conformance, and 5)
form-field max-length enforcement. In some embodiments,
the application firewall 290 ensures cookies are not modi-
fied. In other embodiments, the application firewall 290
protects against forceful browsing by enforcing legal URLs.

In still yet other embodiments, the application firewall
290 protects any confidential information contained in the
network communication. The application firewall 290 may
inspect or analyze any network communication in accor-
dance with the rules or polices of the engine 236 to identify
any confidential information in any field of the network
packet. In some embodiments, the application firewall 290
identifies in the network communication one or more occur-
rences of a credit card number, password, social security
number, name, patient code, contact information, and age.
The encoded portion of the network communication may
comprise these occurrences or the confidential information.
Based on these occurrences, in one embodiment, the appli-
cation firewall 290 may take a policy action on the network
communication, such as prevent transmission of the network
communication. In another embodiment, the application
firewall 290 may rewrite, remove or otherwise mask such
identified occurrence or confidential information.

Still referring to FIG. 2B, the appliance 200 may include
a performance monitoring agent 197 as discussed above in
conjunction with FIG. 1D. In one embodiment, the appli-
ance 200 receives the monitoring agent 197 from the moni-
toring service 198 or monitoring server 106 as depicted in
FIG. 1D. In some embodiments, the appliance 200 stores the
monitoring agent 197 in storage, such as disk, for delivery
to any client or server in communication with the appliance
200. For example, in one embodiment, the appliance 200
transmits the monitoring agent 197 to a client upon receiving
a request to establish a transport layer connection. In other
embodiments, the appliance 200 transmits the monitoring
agent 197 upon establishing the transport layer connection
with the client 102. In another embodiment, the appliance
200 transmits the monitoring agent 197 to the client upon
intercepting or detecting a request for a web page. In yet
another embodiment, the appliance 200 transmits the moni-
toring agent 197 to a client or a server in response to a
request from the monitoring server 198. In one embodiment,
the appliance 200 transmits the monitoring agent 197 to a
second appliance 200" or appliance 205.

In other embodiments, the appliance 200 executes the
monitoring agent 197. In one embodiment, the monitoring
agent 197 measures and monitors the performance of any
application, program, process, service, task or thread execut-
ing on the appliance 200. For example, the monitoring agent
197 may monitor and measure performance and operation of

20

30

40

45

55

30

vServers 275A-275N. In another embodiment, the monitor-
ing agent 197 measures and monitors the performance of
any transport layer connections of the appliance 200. In
some embodiments, the monitoring agent 197 measures and
monitors the performance of any user sessions traversing the
appliance 200. In one embodiment, the monitoring agent
197 measures and monitors the performance of any virtual
private network connections and/or sessions traversing the
appliance 200, such an SSI. VPN session. In still further
embodiments, the monitoring agent 197 measures and moni-
tors the memory, CPU and disk usage and performance of
the appliance 200. In yet another embodiment, the monitor-
ing agent 197 measures and monitors the performance of
any acceleration technique 288 performed by the appliance
200, such as SSL offloading, connection pooling and mul-
tiplexing, caching, and compression. In some embodiments,
the monitoring agent 197 measures and monitors the per-
formance of any load balancing and/or content switching
284 performed by the appliance 200. In other embodiments,
the monitoring agent 197 measures and monitors the per-
formance of application firewall 290 protection and process-
ing performed by the appliance 200.

C. Client Agent

Referring now to FIG. 3, an embodiment of the client
agent 120 is depicted. The client 102 includes a client agent
120 for establishing and exchanging communications with
the appliance 200 and/or server 106 via a network 104. In
brief overview, the client 102 operates on computing device
100 having an operating system with a kernel mode 302 and
a user mode 303, and a network stack 310 with one or more
layers 310a-3105. The client 102 may have installed and/or
execute one or more applications. In some embodiments,
one or more applications may communicate via the network
stack 310 to a network 104. One of the applications, such as
a web browser, may also include a first program 322. For
example, the first program 322 may be used in some
embodiments to install and/or execute the client agent 120,
or any portion thereof. The client agent 120 includes an
interception mechanism, or interceptor 350, for intercepting
network communications from the network stack 310 from
the one or more applications.

The network stack 310 of the client 102 may comprise any
type and form of software, or hardware, or any combinations
thereof, for providing connectivity to and communications
with a network. In one embodiment, the network stack 310
comprises a software implementation for a network protocol
suite. The network stack 310 may comprise one or more
network layers, such as any networks layers of the Open
Systems Interconnection (OSI) communications model as
those skilled in the art recognize and appreciate. As such, the
network stack 310 may comprise any type and form of
protocols for any of the following layers of the OSI model:
1) physical link layer, 2) data link layer, 3) network layer, 4)
transport layer, 5) session layer, 6) presentation layer, and 7)
application layer. In one embodiment, the network stack 310
may comprise a transport control protocol (TCP) over the
network layer protocol of the internet protocol (IP), gener-
ally referred to as TCP/IP. In some embodiments, the TCP/IP
protocol may be carried over the Ethernet protocol, which
may comprise any of the family of IEEE wide-area-network
(WAN) or local-area-network (LAN) protocols, such as
those protocols covered by the IEEE 802.3. In some embodi-
ments, the network stack 310 comprises any type and form
of a wireless protocol, such as IEEE 802.11 and/or mobile
internet protocol.

US 9,461,996 B2

31

In view of a TCP/IP based network, any TCP/IP based
protocol may be used, including Messaging Application
Programming Interface (MAPI) (email), File Transfer Pro-
tocol (FTP), HyperText Transfer Protocol (HTTP), Common
Internet File System (CIFS) protocol (file transfer), Inde-
pendent Computing Architecture (ICA) protocol, Remote
Desktop Protocol (RDP), Wireless Application Protocol
(WAP), Mobile IP protocol, and Voice Over IP (VoIP)
protocol. In another embodiment, the network stack 310
comprises any type and form of transport control protocol,
such as a modified transport control protocol, for example a
Transaction TCP (T/TCP), TCP with selection acknowl-
edgements (TCP-SACK), TCP with large windows (TCP-
LW), a congestion prediction protocol such as the TCP-
Vegas protocol, and a TCP spoofing protocol. In other
embodiments, any type and form of user datagram protocol
(UDP), such as UDP over IP, may be used by the network
stack 310, such as for voice communications or real-time
data communications.

Furthermore, the network stack 310 may include one or
more network drivers supporting the one or more layers,
such as a TCP driver or a network layer driver. The network
drivers may be included as part of the operating system of
the computing device 100 or as part of any network interface
cards or other network access components of the computing
device 100. In some embodiments, any of the network
drivers of the network stack 310 may be customized, modi-
fied or adapted to provide a custom or modified portion of
the network stack 310 in support of any of the techniques
described herein. In other embodiments, the acceleration
program 302 is designed and constructed to operate with or
work in conjunction with the network stack 310 installed or
otherwise provided by the operating system of the client
102.

The network stack 310 comprises any type and form of
interfaces for receiving, obtaining, providing or otherwise
accessing any information and data related to network
communications of the client 102. In one embodiment, an
interface to the network stack 310 comprises an application
programming interface (API). The interface may also com-
prise any function call, hooking or filtering mechanism,
event or call back mechanism, or any type of interfacing
technique. The network stack 310 via the interface may
receive or provide any type and form of data structure, such
as an object, related to functionality or operation of the
network stack 310. For example, the data structure may
comprise information and data related to a network packet or
one or more network packets. In some embodiments, the
data structure comprises a portion of the network packet
processed at a protocol layer of the network stack 310, such
as a network packet of the transport layer. In some embodi-
ments, the data structure 325 comprises a kernel-level data
structure, while in other embodiments, the data structure 325
comprises a user-mode data structure. A kernel-level data
structure may comprise a data structure obtained or related
to a portion of the network stack 310 operating in kernel-
mode 302, or a network driver or other software running in
kernel-mode 302, or any data structure obtained or received
by a service, process, task, thread or other executable
instructions running or operating in kernel-mode of the
operating system.

Additionally, some portions of the network stack 310 may
execute or operate in kernel-mode 302, for example, the data
link or network layer, while other portions execute or
operate in user-mode 303, such as an application layer of the
network stack 310. For example, a first portion 310a of the
network stack may provide user-mode access to the network

40

45

32

stack 310 to an application while a second portion 310a of
the network stack 310 provides access to a network. In some
embodiments, a first portion 310a of the network stack may
comprise one or more upper layers of the network stack 310,
such as any of layers 5-7. In other embodiments, a second
portion 3106 of the network stack 310 comprises one or
more lower layers, such as any of layers 1-4. Each of the first
portion 310a and second portion 31056 of the network stack
310 may comprise any portion of the network stack 310, at
any one or more network layers, in user-mode 203, kernel-
mode, 202, or combinations thereof, or at any portion of a
network layer or interface point to a network layer or any
portion of or interface point to the user-mode 203 and
kernel-mode 203.

The interceptor 350 may comprise software, hardware, or
any combination of software and hardware. In one embodi-
ment, the interceptor 350 intercept a network communica-
tion at any point in the network stack 310, and redirects or
transmits the network communication to a destination
desired, managed or controlled by the interceptor 350 or
client agent 120. For example, the interceptor 350 may
intercept a network communication of a network stack 310
of a first network and transmit the network communication
to the appliance 200 for transmission on a second network
104. In some embodiments, the interceptor 350 comprises
any type interceptor 350 comprises a driver, such as a
network driver constructed and designed to interface and
work with the network stack 310. In some embodiments, the
client agent 120 and/or interceptor 350 operates at one or
more layers of the network stack 310, such as at the transport
layer. In one embodiment, the interceptor 350 comprises a
filter driver, hooking mechanism, or any form and type of
suitable network driver interface that interfaces to the trans-
port layer of the network stack, such as via the transport
driver interface (TDI). In some embodiments, the interceptor
350 interfaces to a first protocol layer, such as the transport
layer and another protocol layer, such as any layer above the
transport protocol layer, for example, an application proto-
col layer. In one embodiment, the interceptor 350 may
comprise a driver complying with the Network Driver
Interface Specification (NDIS), or a NDIS driver. In another
embodiment, the interceptor 350 may comprise a mini-filter
or a mini-port driver. In one embodiment, the interceptor
350, or portion thereof, operates in kernel-mode 202. In
another embodiment, the interceptor 350, or portion thereof,
operates in user-mode 203. In some embodiments, a portion
of the interceptor 350 operates in kernel-mode 202 while
another portion of the interceptor 350 operates in user-mode
203. In other embodiments, the client agent 120 operates in
user-mode 203 but interfaces via the interceptor 350 to a
kernel-mode driver, process, service, task or portion of the
operating system, such as to obtain a kernel-level data
structure 225. In further embodiments, the interceptor 350 is
a user-mode application or program, such as application.

In one embodiment, the interceptor 350 intercepts any
transport layer connection requests. In these embodiments,
the interceptor 350 execute transport layer application pro-
gramming interface (API) calls to set the destination infor-
mation, such as destination IP address and/or port to a
desired location for the location. In this manner, the inter-
ceptor 350 intercepts and redirects the transport layer con-
nection to a IP address and port controlled or managed by the
interceptor 350 or client agent 120. In one embodiment, the
interceptor 350 sets the destination information for the
connection to a local IP address and port of the client 102 on
which the client agent 120 is listening. For example, the
client agent 120 may comprise a proxy service listening on

US 9,461,996 B2

33

a local IP address and port for redirected transport layer
communications. In some embodiments, the client agent 120
then communicates the redirected transport layer communi-
cation to the appliance 200.

In some embodiments, the interceptor 350 intercepts a
Domain Name Service (DNS) request. In one embodiment,
the client agent 120 and/or interceptor 350 resolves the DNS
request. In another embodiment, the interceptor transmits
the intercepted DNS request to the appliance 200 for DNS
resolution. In one embodiment, the appliance 200 resolves
the DNS request and communicates the DNS response to the
client agent 120. In some embodiments, the appliance 200
resolves the DNS request via another appliance 200' or a
DNS server 106.

In yet another embodiment, the client agent 120 may
comprise two agents 120 and 120'. In one embodiment, a
first agent 120 may comprise an interceptor 350 operating at
the network layer of the network stack 310. In some embodi-
ments, the first agent 120 intercepts network layer requests
such as Internet Control Message Protocol (ICMP) requests
(e.g., ping and traceroute). In other embodiments, the second
agent 120' may operate at the transport layer and intercept
transport layer communications. In some embodiments, the
first agent 120 intercepts communications at one layer of the
network stack 210 and interfaces with or communicates the
intercepted communication to the second agent 120"

The client agent 120 and/or interceptor 350 may operate
at or interface with a protocol layer in a manner transparent
to any other protocol layer of the network stack 310. For
example, in one embodiment, the interceptor 350 operates or
interfaces with the transport layer of the network stack 310
transparently to any protocol layer below the transport layer,
such as the network layer, and any protocol layer above the
transport layer, such as the session, presentation or applica-
tion layer protocols. This allows the other protocol layers of
the network stack 310 to operate as desired and without
modification for using the interceptor 350. As such, the
client agent 120 and/or interceptor 350 can interface with the
transport layer to secure, optimize, accelerate, route or
load-balance any communications provided via any protocol
carried by the transport layer, such as any application layer
protocol over TCP/IP.

Furthermore, the client agent 120 and/or interceptor may
operate at or interface with the network stack 310 in a
manner transparent to any application, a user of the client
102, and any other computing device, such as a server, in
communications with the client 102. The client agent 120
and/or interceptor 350 may be installed and/or executed on
the client 102 in a manner without modification of an
application. In some embodiments, the user of the client 102
or a computing device in communications with the client
102 are not aware of the existence, execution or operation of
the client agent 120 and/or interceptor 350. As such, in some
embodiments, the client agent 120 and/or interceptor 350 is
installed, executed, and/or operated transparently to an
application, user of the client 102, another computing
device, such as a server, or any of the protocol layers above
and/or below the protocol layer interfaced to by the inter-
ceptor 350.

The client agent 120 includes an acceleration program
302, a streaming client 306, a collection agent 304, and/or
monitoring agent 197. In one embodiment, the client agent
120 comprises an Independent Computing Architecture
(ICA) client, or any portion thereof, developed by Citrix
Systems, Inc. of Fort Lauderdale, Fla., and is also referred
to as an ICA client. In some embodiments, the client 120
comprises an application streaming client 306 for streaming

10

15

20

25

30

35

40

45

50

55

60

65

34

an application from a server 106 to a client 102. In some
embodiments, the client agent 120 comprises an acceleration
program 302 for accelerating communications between cli-
ent 102 and server 106. In another embodiment, the client
agent 120 includes a collection agent 304 for performing
end-point detection/scanning and collecting end-point infor-
mation for the appliance 200 and/or server 106.

In some embodiments, the acceleration program 302
comprises a client-side acceleration program for performing
one or more acceleration techniques to accelerate, enhance
or otherwise improve a client’s communications with and/or
access to a server 106, such as accessing an application
provided by a server 106. The logic, functions, and/or
operations of the executable instructions of the acceleration
program 302 may perform one or more of the following
acceleration techniques: 1) multi-protocol compression, 2)
transport control protocol pooling, 3) transport control pro-
tocol multiplexing, 4) transport control protocol buffering,
and 5) caching via a cache manager. Additionally, the
acceleration program 302 may perform encryption and/or
decryption of any communications received and/or trans-
mitted by the client 102. In some embodiments, the accel-
eration program 302 performs one or more of the accelera-
tion techniques in an integrated manner or fashion.
Additionally, the acceleration program 302 can perform
compression on any of the protocols, or multiple-protocols,
carried as a payload of a network packet of the transport
layer protocol. The streaming client 306 comprises an appli-
cation, program, process, service, task or executable instruc-
tions for receiving and executing a streamed application
from a server 106. A server 106 may stream one or more
application data files to the streaming client 306 for playing,
executing or otherwise causing to be executed the applica-
tion on the client 102. In some embodiments, the server 106
transmits a set of compressed or packaged application data
files to the streaming client 306. In some embodiments, the
plurality of application files are compressed and stored on a
file server within an archive file such as a CAB, ZIP, SIT,
TAR, JAR or other archive. In one embodiment, the server
106 decompresses, unpackages or unarchives the application
files and transmits the files to the client 102. In another
embodiment, the client 102 decompresses, unpackages or
unarchives the application files. The streaming client 306
dynamically installs the application, or portion thereof, and
executes the application. In one embodiment, the streaming
client 306 may be an executable program. In some embodi-
ments, the streaming client 306 may be able to launch
another executable program.

The collection agent 304 comprises an application, pro-
gram, process, service, task or executable instructions for
identifying, obtaining and/or collecting information about
the client 102. In some embodiments, the appliance 200
transmits the collection agent 304 to the client 102 or client
agent 120. The collection agent 304 may be configured
according to one or more policies of the policy engine 236
of the appliance. In other embodiments, the collection agent
304 transmits collected information on the client 102 to the
appliance 200. In one embodiment, the policy engine 236 of
the appliance 200 uses the collected information to deter-
mine and provide access, authentication and authorization
control of the client’s connection to a network 104.

In one embodiment, the collection agent 304 comprises an
end-point detection and scanning mechanism, which iden-
tifies and determines one or more attributes or characteristics
of the client. For example, the collection agent 304 may
identify and determine any one or more of the following
client-side attributes: 1) the operating system an/or a version

US 9,461,996 B2

35

of an operating system, 2) a service pack of the operating
system, 3) a running service, 4) a running process, and 5) a
file. The collection agent 304 may also identify and deter-
mine the presence or versions of any one or more of the
following on the client: 1) antivirus software, 2) personal
firewall software, 3) anti-spam software, and 4) internet
security software. The policy engine 236 may have one or
more policies based on any one or more of the attributes or
characteristics of the client or client-side attributes.

In some embodiments, the client agent 120 includes a
monitoring agent 197 as discussed in conjunction with
FIGS. 1D and 2B. The monitoring agent 197 may be any
type and form of script, such as Visual Basic or Java script.
In one embodiment, the monitoring agent 197 monitors and
measures performance of any portion of the client agent 120.
For example, in some embodiments, the monitoring agent
197 monitors and measures performance of the acceleration
program 302. In another embodiment, the monitoring agent
197 monitors and measures performance of the streaming
client 306. In other embodiments, the monitoring agent 197
monitors and measures performance of the collection agent
304. In still another embodiment, the monitoring agent 197
monitors and measures performance of the interceptor 350.
In some embodiments, the monitoring agent 197 monitors
and measures any resource of the client 102, such as
memory, CPU and disk.

The monitoring agent 197 may monitor and measure
performance of any application of the client. In one embodi-
ment, the monitoring agent 197 monitors and measures
performance of a browser on the client 102. In some
embodiments, the monitoring agent 197 monitors and mea-
sures performance of any application delivered via the client
agent 120. In other embodiments, the monitoring agent 197
measures and monitors end user response times for an
application, such as web-based or HTTP response times. The
monitoring agent 197 may monitor and measure perfor-
mance of an ICA or RDP client. In another embodiment, the
monitoring agent 197 measures and monitors metrics for a
user session or application session. In some embodiments,
monitoring agent 197 measures and monitors an ICA or
RDP session. In one embodiment, the monitoring agent 197
measures and monitors the performance of the appliance 200
in accelerating delivery of an application and/or data to the
client 102.

In some embodiments and still referring to FIG. 3, a first
program 322 may be used to install and/or execute the client
agent 120, or portion thereof, such as the interceptor 350,
automatically, silently, transparently, or otherwise. In one
embodiment, the first program 322 comprises a plugin
component, such an ActiveX control or Java control or script
that is loaded into and executed by an application. For
example, the first program comprises an ActiveX control
loaded and run by a web browser application, such as in the
memory space or context of the application. In another
embodiment, the first program 322 comprises a set of
executable instructions loaded into and run by the applica-
tion, such as a browser. In one embodiment, the first
program 322 comprises a designed and constructed program
to install the client agent 120. In some embodiments, the first
program 322 obtains, downloads, or receives the client agent
120 via the network from another computing device. In
another embodiment, the first program 322 is an installer
program or a plug and play manager for installing programs,
such as network drivers, on the operating system of the
client 102.

10

15

20

25

30

35

40

45

50

55

60

65

36

D. Systems and Methods for Providing Virtualized Appli-
cation Delivery Controller

Referring now to FIG. 4A, a block diagram depicts one
embodiment of a virtualization environment 400. In brief
overview, a computing device 100 includes a hypervisor
layer, a virtualization layer, and a hardware layer. The
hypervisor layer includes a hypervisor 401 (also referred to
as a virtualization manager) that allocates and manages
access to a number of physical resources in the hardware
layer (e.g., the processor(s) 421, and disk(s) 428) by at least
one virtual machine executing in the virtualization layer. The
virtualization layer includes at least one operating system
410 and a plurality of virtual resources allocated to the at
least one operating system 410. Virtual resources may
include, without limitation, a plurality of virtual processors
432a, 432b, 432¢ (generally 432), and virtual disks 442a,
4425, 442¢ (generally 442), as well as virtual resources such
as virtual memory and virtual network interfaces. The plu-
rality of virtual resources and the operating system 410 may
be referred to as a virtual machine 406. A virtual machine
406 may include a control operating system 405 in commu-
nication with the hypervisor 401 and used to execute appli-
cations for managing and configuring other virtual machines
on the computing device 100.

In greater detail, a hypervisor 401 may provide virtual
resources to an operating system in any manner which
simulates the operating system having access to a physical
device. A hypervisor 401 may provide virtual resources to
any number of guest operating systems 410a, 4105 (gener-
ally 410). In some embodiments, a computing device 100
executes one or more types of hypervisors. In these embodi-
ments, hypervisors may be used to emulate virtual hardware,
partition physical hardware, virtualize physical hardware,
and execute virtual machines that provide access to com-
puting environments. Hypervisors may include those manu-
factured by VMWare, Inc., of Palo Alto, Calif.; the XEN
hypervisor, an open source product whose development is
overseen by the open source Xen.org community; HyperV,
VirtualServer or virtual PC hypervisors provided by Micro-
soft, or others. In some embodiments, a computing device
100 executing a hypervisor that creates a virtual machine
platform on which guest operating systems may execute is
referred to as a host server. In one of these embodiments, for
example, the computing device 100 is a XEN SERVER
provided by Citrix Systems, Inc., of Fort Lauderdale, Fla.

In some embodiments, a hypervisor 401 executes within
an operating system executing on a computing device. In
one of these embodiments, a computing device executing an
operating system and a hypervisor 401 may be said to have
a host operating system (the operating system executing on
the computing device), and a guest operating system (an
operating system executing within a computing resource
partition provided by the hypervisor 401). In other embodi-
ments, a hypervisor 401 interacts directly with hardware on
a computing device, instead of executing on a host operating
system. In one of these embodiments, the hypervisor 401
may be said to be executing on “bare metal,” referring to the
hardware comprising the computing device.

In some embodiments, a hypervisor 401 may create a
virtual machine 406a-c (generally 406) in which an operat-
ing system 410 executes. In one of these embodiments, for
example, the hypervisor 401 loads a virtual machine image
to create a virtual machine 406. In another of these embodi-
ments, the hypervisor 401 executes an operating system 410
within the virtual machine 406. In still another of these
embodiments, the virtual machine 406 executes an operating
system 410.

US 9,461,996 B2

37

In some embodiments, the hypervisor 401 controls pro-
cessor scheduling and memory partitioning for a virtual
machine 406 executing on the computing device 100. In one
of these embodiments, the hypervisor 401 controls the
execution of at least one virtual machine 406. In another of
these embodiments, the hypervisor 401 presents at least one
virtual machine 406 with an abstraction of at least one
hardware resource provided by the computing device 100. In
other embodiments, the hypervisor 401 controls whether and
how physical processor capabilities are presented to the
virtual machine 406.

A control operating system 405 may execute at least one
application for managing and configuring the guest operat-
ing systems. In one embodiment, the control operating
system 405 may execute an administrative application, such
as an application including a user interface providing admin-
istrators with access to functionality for managing the
execution of a virtual machine, including functionality for
executing a virtual machine, terminating an execution of a
virtual machine, or identifying a type of physical resource
for allocation to the virtual machine. In another embodi-
ment, the hypervisor 401 executes the control operating
system 405 within a virtual machine 406 created by the
hypervisor 401. In still another embodiment, the control
operating system 405 executes in a virtual machine 406 that
is authorized to directly access physical resources on the
computing device 100. In some embodiments, a control
operating system 405a on a computing device 100a may
exchange data with a control operating system 4055 on a
computing device 1005, via communications between a
hypervisor 401a and a hypervisor 4015. In this way, one or
more computing devices 100 may exchange data with one or
more of the other computing devices 100 regarding proces-
sors and other physical resources available in a pool of
resources. In one of these embodiments, this functionality
allows a hypervisor to manage a pool of resources distrib-
uted across a plurality of physical computing devices. In
another of these embodiments, multiple hypervisors manage
one or more of the guest operating systems executed on one
of the computing devices 100.

In one embodiment, the control operating system 405
executes in a virtual machine 406 that is authorized to
interact with at least one guest operating system 410. In
another embodiment, a guest operating system 410 commu-
nicates with the control operating system 405 via the hyper-
visor 401 in order to request access to a disk or a network.
In still another embodiment, the guest operating system 410
and the control operating system 405 may communicate via
a communication channel established by the hypervisor 401,
such as, for example, via a plurality of shared memory pages
made available by the hypervisor 401. In some embodi-
ments, the control operating system 405 includes a network
back-end driver for communicating directly with network-
ing hardware provided by the computing device 100. In one
of these embodiments, the network back-end driver pro-
cesses at least one virtual machine request from at least one
guest operating system 110. In other embodiments, the
control operating system 405 includes a block back-end
driver for communicating with a storage element on the
computing device 100. In one of these embodiments, the
block back-end driver reads and writes data from the storage
element based upon at least one request received from a
guest operating system 410.

In one embodiment, the control operating system 405
includes a tools stack 404. In another embodiment, a tools
stack 404 provides functionality for interacting with the
hypervisor 401, communicating with other control operating

30

35

40

45

50

38

systems 405 (for example, on a second computing device
1005), or managing virtual machines 4065, 406¢ on the
computing device 100. In another embodiment, the tools
stack 404 includes customized applications for providing
improved management functionality to an administrator of a
virtual machine farm. In some embodiments, at least one of
the tools stack 404 and the control operating system 405
include a management API that provides an interface for
remotely configuring and controlling virtual machines 406
running on a computing device 100. In other embodiments,
the control operating system 405 communicates with the
hypervisor 401 through the tools stack 404.

In one embodiment, the hypervisor 401 executes a guest
operating system 410 within a virtual machine 406 created
by the hypervisor 401. In another embodiment, the guest
operating system 410 provides a user of the computing
device 100 with access to resources within a computing
environment. In still another embodiment, a resource
includes a program, an application, a document, a file, a
plurality of applications, a plurality of files, an executable
program file, a desktop environment, a computing environ-
ment, or other resource made available to a user of the
computing device 100. In yet another embodiment, the
resource may be delivered to the computing device 100 via
a plurality of access methods including, but not limited to,
conventional installation directly on the computing device
100, delivery to the computing device 100 via a method for
application streaming, delivery to the computing device 100
of output data generated by an execution of the resource on
a second computing device 100" and communicated to the
computing device 100 via a presentation layer protocol,
delivery to the computing device 100 of output data gener-
ated by an execution of the resource via a virtual machine
executing on a second computing device 100', or execution
from a removable storage device connected to the comput-
ing device 100, such as a USB device, or via a virtual
machine executing on the computing device 100 and gen-
erating output data. In some embodiments, the computing
device 100 transmits output data generated by the execution
of the resource to another computing device 100'.

In one embodiment, the guest operating system 410, in
conjunction with the virtual machine on which it executes,
forms a fully-virtualized virtual machine which is not aware
that it is a virtual machine; such a machine may be referred
to as a “Domain U HVM (Hardware Virtual Machine)
virtual machine”. In another embodiment, a fully-virtualized
machine includes software emulating a Basic Input/Output
System (BIOS) in order to execute an operating system
within the fully-virtualized machine. In still another embodi-
ment, a fully-virtualized machine may include a driver that
provides functionality by communicating with the hypervi-
sor 401. In such an embodiment, the driver may be aware
that it executes within a virtualized environment. In another
embodiment, the guest operating system 410, in conjunction
with the virtual machine on which it executes, forms a
paravirtualized virtual machine, which is aware that it is a
virtual machine; such a machine may be referred to as a
“Domain U PV virtual machine”. In another embodiment, a
paravirtualized machine includes additional drivers that a
fully-virtualized machine does not include. In still another
embodiment, the paravirtualized machine includes the net-
work back-end driver and the block back-end driver
included in a control operating system 405, as described
above.

Referring now to FIG. 4B, a block diagram depicts one
embodiment of a plurality of networked computing devices
in a system in which at least one physical host executes a

US 9,461,996 B2

39

virtual machine. In brief overview, the system includes a
management component 404 and a hypervisor 401. The
system includes a plurality of computing devices 100, a
plurality of virtual machines 406, a plurality of hypervisors
401, a plurality of management components referred to
variously as tools stacks 404 or management components
404, and a physical resource 421, 428. The plurality of
physical machines 100 may each be provided as computing
devices 100, described above in connection with FIGS.
1E-1H and 4A.

In greater detail, a physical disk 428 is provided by a
computing device 100 and stores at least a portion of a
virtual disk 442. In some embodiments, a virtual disk 442 is
associated with a plurality of physical disks 428. In one of
these embodiments, one or more computing devices 100
may exchange data with one or more of the other computing
devices 100 regarding processors and other physical
resources available in a pool of resources, allowing a hyper-
visor to manage a pool of resources distributed across a
plurality of physical computing devices. In some embodi-
ments, a computing device 100 on which a virtual machine
406 executes is referred to as a physical host 100 or as a host
machine 100.

The hypervisor executes on a processor on the computing
device 100. The hypervisor allocates, to a virtual disk, an
amount of access to the physical disk. In one embodiment,
the hypervisor 401 allocates an amount of space on the
physical disk. In another embodiment, the hypervisor 401
allocates a plurality of pages on the physical disk. In some
embodiments, the hypervisor provisions the virtual disk 442
as part of a process of initializing and executing a virtual
machine 450.

In one embodiment, the management component 4044 is
referred to as a pool management component 404a. In
another embodiment, a management operating system 405a,
which may be referred to as a control operating system 405a,
includes the management component. In some embodi-
ments, the management component is referred to as a tools
stack. In one of these embodiments, the management com-
ponent is the tools stack 404 described above in connection
with FIG. 4A. In other embodiments, the management
component 404 provides a user interface for receiving, from
a user such as an administrator, an identification of a virtual
machine 406 to provision and/or execute. In still other
embodiments, the management component 404 provides a
user interface for receiving, from a user such as an admin-
istrator, the request for migration of a virtual machine 4065
from one physical machine 100 to another. In further
embodiments, the management component 404q identifies a
computing device 1005 on which to execute a requested
virtual machine 4064 and instructs the hypervisor 4015 on
the identified computing device 1005 to execute the identi-
fied virtual machine; such a management component may be
referred to as a pool management component.

Referring now to FIG. 4C, embodiments of a virtual
application delivery controller or virtual appliance 450 are
depicted. In brief overview, any of the functionality and/or
embodiments of the appliance 200 (e.g., an application
delivery controller) described above in connection with
FIGS. 2A and 2B may be deployed in any embodiment of the
virtualized environment described above in connection with
FIGS. 4A and 4B. Instead of the functionality of the appli-
cation delivery controller being deployed in the form of an
appliance 200, such functionality may be deployed in a
virtualized environment 400 on any computing device 100,
such as a client 102, server 106 or appliance 200.

10

15

20

25

30

35

40

45

50

55

60

65

40

Referring now to FIG. 4C, a diagram of an embodiment
of a virtual appliance 450 operating on a hypervisor 401 of
a server 106 is depicted. As with the appliance 200 of FIGS.
2A and 2B, the virtual appliance 450 may provide function-
ality for availability, performance, offload and security. For
availability, the virtual appliance may perform load balanc-
ing between layers 4 and 7 of the network and may also
perform intelligent service health monitoring. For perfor-
mance increases via network traffic acceleration, the virtual
appliance may perform caching and compression. To offload
processing of any servers, the virtual appliance may perform
connection multiplexing and pooling and/or SSL. processing.
For security, the virtual appliance may perform any of the
application firewall functionality and SSL. VPN function of
appliance 200.

Any of the modules of the appliance 200 as described in
connection with FIG. 2A may be packaged, combined,
designed or constructed in a form of the virtualized appli-
ance delivery controller 450 deployable as one or more
software modules or components executable in a virtualized
environment 300 or non-virtualized environment on any
server, such as an off the shelf server. For example, the
virtual appliance may be provided in the form of an instal-
lation package to install on a computing device. With
reference to FIG. 2A, any of the cache manager 232, policy
engine 236, compression 238, encryption engine 234, packet
engine 240, GUI 210, CLI 212, shell services 214 and health
monitoring programs 216 may be designed and constructed
as a software component or module to run on any operating
system of a computing device and/or of a virtualized envi-
ronment 300. Instead of using the encryption processor 260,
processor 262, memory 264 and network stack 267 of the
appliance 200, the virtualized appliance 400 may use any of
these resources as provided by the virtualized environment
400 or as otherwise available on the server 106.

Still referring to FIG. 4C, and in brief overview, any one
or more vServers 275A-275N may be in operation or
executed in a virtualized environment 400 of any type of
computing device 100, such as any server 106. Any of the
modules or functionality of the appliance 200 described in
connection with FIG. 2B may be designed and constructed
to operate in either a virtualized or non-virtualized environ-
ment of a server. Any of the vServer 275, SSL. VPN 280,
Intranet UP 282, Switching 284, DNS 286, acceleration 288,
App FW 280 and monitoring agent may be packaged,
combined, designed or constructed in a form of application
delivery controller 450 deployable as one or more software
modules or components executable on a device and/or
virtualized environment 400.

In some embodiments, a server may execute multiple
virtual machines 406a-4067 in the virtualization environ-
ment with each virtual machine running the same or different
embodiments of the virtual application delivery controller
450. In some embodiments, the server may execute one or
more virtual appliances 450 on one or more virtual machines
on a core of a multi-core processing system. In some
embodiments, the server may execute one or more virtual
appliances 450 on one or more virtual machines on each
processor of a multiple processor device.

E. Systems and Methods for Providing a Multi-Core Archi-
tecture

In accordance with Moore’s Law, the number of transis-
tors that may be placed on an integrated circuit may double
approximately every two years. However, CPU speed
increases may reach plateaus, for example CPU speed has
been around 3.5-4 GHz range since 2005. In some cases,
CPU manufacturers may not rely on CPU speed increases to

US 9,461,996 B2

41

gain additional performance. Some CPU manufacturers may
add additional cores to their processors to provide additional
performance. Products, such as those of software and net-
working vendors, that rely on CPUs for performance gains
may improve their performance by leveraging these multi-
core CPUs. The software designed and constructed for a
single CPU may be redesigned and/or rewritten to take
advantage of a multi-threaded, parallel architecture or oth-
erwise a multi-core architecture.

A multi-core architecture of the appliance 200, referred to
as nCore or multi-core technology, allows the appliance in
some embodiments to break the single core performance
barrier and to leverage the power of multi-core CPUs. In the
previous architecture described in connection with FIG. 2A,
a single network or packet engine is run. The multiple cores
of the nCore technology and architecture allow multiple
packet engines to run concurrently and/or in parallel. With
a packet engine running on each core, the appliance archi-
tecture leverages the processing capacity of additional cores.
In some embodiments, this provides up to a 7x increase in
performance and scalability.

Illustrated in FIG. 5A are some embodiments of work,
task, load or network traffic distribution across one or more
processor cores according to a type of parallelism or parallel
computing scheme, such as functional parallelism, data
parallelism or flow-based data parallelism. In brief over-
view, FIG. 5A illustrates embodiments of a multi-core
system such as an appliance 200' with n-cores, a total of
cores numbers 1 through N. In one embodiment, work, load
or network traffic can be distributed among a first core 505A,
a second core 505B, a third core 505C, a fourth core 505D,
a fifth core 505E, a sixth core 505F, a seventh core 505G,
and so on such that distribution is across all or two or more
of the n cores 505N (hereinafter referred to collectively as
cores 505.) There may be multiple VIPs 275 each running on
a respective core of the plurality of cores. There may be
multiple packet engines 240 each running on a respective
core of the plurality of cores. Any of the approaches used
may lead to different, varying or similar work load or
performance level 515 across any of the cores. For a
functional parallelism approach, each core may run a dif-
ferent function of the functionalities provided by the packet
engine, a VIP 275 or appliance 200. In a data parallelism
approach, data may be paralleled or distributed across the
cores based on the Network Interface Card (NIC) or VIP 275
receiving the data. In another data parallelism approach,
processing may be distributed across the cores by distribut-
ing data flows to each core.

In further detail to FIG. 5A, in some embodiments, load,
work or network traffic can be distributed among cores 505
according to functional parallelism 500. Functional paral-
lelism may be based on each core performing one or more
respective functions. In some embodiments, a first core may
perform a first function while a second core performs a
second function. In functional parallelism approach, the
functions to be performed by the multi-core system are
divided and distributed to each core according to function-
ality. In some embodiments, functional parallelism may be
referred to as task parallelism and may be achieved when
each processor or core executes a different process or
function on the same or different data. The core or processor
may execute the same or different code. In some cases,
different execution threads or code may communicate with
one another as they work. Communication may take place to
pass data from one thread to the next as part of a workflow.

In some embodiments, distributing work across the cores
505 according to functional parallelism 500, can comprise

10

15

20

25

30

35

40

45

50

55

60

65

42

distributing network traffic according to a particular function
such as network input/output management (NW 1/O) 510A,
secure sockets layer (SSL) encryption and decryption 510B
and transmission control protocol (TCP) functions 510C.
This may lead to a work, performance or computing load
515 based on a volume or level of functionality being used.
In some embodiments, distributing work across the cores
505 according to data parallelism 540, can comprise distrib-
uting an amount of work 515 based on distributing data
associated with a particular hardware or software compo-
nent. In some embodiments, distributing work across the
cores 505 according to flow-based data parallelism 520, can
comprise distributing data based on a context or flow such
that the amount of work 515A-N on each core may be
similar, substantially equal or relatively evenly distributed.

In the case of the functional parallelism approach, each
core may be configured to run one or more functionalities of
the plurality of functionalities provided by the packet engine
or VIP of the appliance. For example, core 1 may perform
network /O processing for the appliance 200' while core 2
performs TCP connection management for the appliance.
Likewise, core 3 may perform SSL offloading while core 4
may perform layer 7 or application layer processing and
traffic management. Each of the cores may perform the same
function or different functions. Each of the cores may
perform more than one function. Any of the cores may run
any of the functionality or portions thereof identified and/or
described in conjunction with FIGS. 2A and 2B. In this the
approach, the work across the cores may be divided by
function in either a coarse-grained or fine-grained manner. In
some cases, as illustrated in FIG. 5A, division by function
may lead to different cores running at different levels of
performance or load 515.

In the case of the functional parallelism approach, each
core may be configured to run one or more functionalities of
the plurality of functionalities provided by the packet engine
of the appliance. For example, core 1 may perform network
1/0O processing for the appliance 200' while core 2 performs
TCP connection management for the appliance. Likewise,
core 3 may perform SSL offloading while core 4 may
perform layer 7 or application layer processing and traffic
management. Each of the cores may perform the same
function or different functions. Each of the cores may
perform more than one function. Any of the cores may run
any of the functionality or portions thereof identified and/or
described in conjunction with FIGS. 2A and 2B. In this the
approach, the work across the cores may be divided by
function in either a coarse-grained or fine-grained manner. In
some cases, as illustrated in FIG. 5A division by function
may lead to different cores running at different levels of load
or performance.

The functionality or tasks may be distributed in any
arrangement and scheme. For example, FIG. 5B illustrates a
first core, Core 1 505A, processing applications and pro-
cesses associated with network I/O functionality 510A.
Network traffic associated with network 1/0O, in some
embodiments, can be associated with a particular port num-
ber. Thus, outgoing and incoming packets having a port
destination associated with NW I/O 510A will be directed
towards Core 1 505A which is dedicated to handling all
network traffic associated with the NW [/O port. Similarly,
Core 2 505B is dedicated to handling functionality associ-
ated with SSL processing and Core 4 505D may be dedi-
cated handling all TCP level processing and functionality.

While FIG. 5A illustrates functions such as network 1/O,
SSL and TCP, other functions can be assigned to cores.
These other functions can include any one or more of the

US 9,461,996 B2

43

functions or operations described herein. For example, any
of the functions described in conjunction with FIGS. 2A and
2B may be distributed across the cores on a functionality
basis. In some cases, a first VIP 275A may run on a first core
while a second VIP 275B with a different configuration may
run on a second core. In some embodiments, each core 505
can handle a particular functionality such that each core 505
can handle the processing associated with that particular
function. For example, Core 2 505B may handle SSL
offloading while Core 4 505D may handle application layer
processing and traffic management.

In other embodiments, work, load or network traffic may
be distributed among cores 505 according to any type and
form of data parallelism 540. In some embodiments, data
parallelism may be achieved in a multi-core system by each
core performing the same task or functionally on different
pieces of distributed data. In some embodiments, a single
execution thread or code controls operations on all pieces of
data. In other embodiments, different threads or instructions
control the operation, but may execute the same code. In
some embodiments, data parallelism is achieved from the
perspective of a packet engine, vServers (VIPs) 275A-C,
network interface cards (NIC) 542D-E and/or any other
networking hardware or software included on or associated
with an appliance 200. For example, each core may run the
same packet engine or VIP code or configuration but operate
on different sets of distributed data. Each networking hard-
ware or software construct can receive different, varying or
substantially the same amount of data, and as a result may
have varying, different or relatively the same amount of load
515.

In the case of a data parallelism approach, the work may
be divided up and distributed based on VIPs, NICs and/or
data flows of the VIPs or NICs. In one of these approaches,
the work of the multi-core system may be divided or
distributed among the VIPs by having each VIP work on a
distributed set of data. For example, each core may be
configured to run one or more VIPs. Network traffic may be
distributed to the core for each VIP handling that traffic. In
another of these approaches, the work of the appliance may
be divided or distributed among the cores based on which
NIC receives the network traffic. For example, network
traffic of a first NIC may be distributed to a first core while
network traffic of a second NIC may be distributed to a
second core. In some cases, a core may process data from
multiple NICs.

While FIG. 5A illustrates a single vServer associated with
a single core 505, as is the case for VIP1 275A, VIP2 275B
and VIP3 275C. In some embodiments, a single vServer can
be associated with one or more cores 505. In contrast, one
or more vServers can be associated with a single core 505.
Associating a vServer with a core 505 may include that core
505 to process all functions associated with that particular
vServer. In some embodiments, each core executes a VIP
having the same code and configuration. In other embodi-
ments, each core executes a VIP having the same code but
different configuration. In some embodiments, each core
executes a VIP having different code and the same or
different configuration.

Like vServers, NICs can also be associated with particular
cores 505. In many embodiments, NICs can be connected to
one or more cores 505 such that when a NIC receives or
transmits data packets, a particular core 505 handles the
processing involved with receiving and transmitting the data
packets. In one embodiment, a single NIC can be associated
with a single core 505, as is the case with NIC1 542D and
NIC2 542E. In other embodiments, one or more NICs can be

10

15

20

25

30

35

40

45

50

55

60

65

44

associated with a single core 505. In other embodiments, a
single NIC can be associated with one or more cores 505. In
these embodiments, load could be distributed amongst the
one or more cores 505 such that each core 505 processes a
substantially similar amount of load. A core 505 associated
with a NIC may process all functions and/or data associated
with that particular NIC.

While distributing work across cores based on data of
VIPs or NICs may have a level of independency, in some
embodiments, this may lead to unbalanced use of cores as
illustrated by the varying loads 515 of FIG. 5A.

In some embodiments, load, work or network traffic can
be distributed among cores 505 based on any type and form
of data flow. In another of these approaches, the work may
be divided or distributed among cores based on data flows.
For example, network traffic between a client and a server
traversing the appliance may be distributed to and processed
by one core of the plurality of cores. In some cases, the core
initially establishing the session or connection may be the
core for which network traffic for that session or connection
is distributed. In some embodiments, the data flow is based
on any unit or portion of network traffic, such as a transac-
tion, a request/response communication or traffic originating
from an application on a client. In this manner and in some
embodiments, data flows between clients and servers tra-
versing the appliance 200" may be distributed in a more
balanced manner than the other approaches.

In flow-based data parallelism 520, distribution of data is
related to any type of flow of data, such as request/response
pairings, transactions, sessions, connections or application
communications. For example, network traffic between a
client and a server traversing the appliance may be distrib-
uted to and processed by one core of the plurality of cores.
In some cases, the core initially establishing the session or
connection may be the core for which network traffic for that
session or connection is distributed. The distribution of data
flow may be such that each core 505 carries a substantially
equal or relatively evenly distributed amount of load, data or
network traffic.

In some embodiments, the data flow is based on any unit
or portion of network traffic, such as a transaction, a request/
response communication or traffic originating from an appli-
cation on a client. In this manner and in some embodiments,
data flows between clients and servers traversing the appli-
ance 200" may be distributed in a more balanced manner than
the other approached. In one embodiment, data flow can be
distributed based on a transaction or a series of transactions.
This transaction, in some embodiments, can be between a
client and a server and can be characterized by an IP address
or other packet identifier. For example, Core 1 505A can be
dedicated to transactions between a particular client and a
particular server, therefore the load 515A on Core 1 505A
may be comprised of the network traffic associated with the
transactions between the particular client and server. Allo-
cating the network traffic to Core 1 505A can be accom-
plished by routing all data packets originating from either
the particular client or server to Core 1 505A.

While work or load can be distributed to the cores based
in part on transactions, in other embodiments load or work
can be allocated on a per packet basis. In these embodi-
ments, the appliance 200 can intercept data packets and
allocate them to a core 505 having the least amount of load.
For example, the appliance 200 could allocate a first incom-
ing data packet to Core 1 505A because the load 515A on
Core 1 is less than the load 515B-N on the rest of the cores
505B-N. Once the first data packet is allocated to Core 1
505A, the amount of load 515A on Core 1 505A is increased

US 9,461,996 B2

45

proportional to the amount of processing resources needed
to process the first data packet. When the appliance 200
intercepts a second data packet, the appliance 200 will
allocate the load to Core 4 505D because Core 4 505D has
the second least amount of load. Allocating data packets to
the core with the least amount of load can, in some embodi-
ments, ensure that the load 515A-N distributed to each core
505 remains substantially equal.

In other embodiments, load can be allocated on a per unit
basis where a section of network traffic is allocated to a
particular core 505. The above-mentioned example illus-
trates load balancing on a per/packet basis. In other embodi-
ments, load can be allocated based on a number of packets
such that every 10, 100 or 1000 packets are allocated to the
core 505 having the least amount of load. The number of
packets allocated to a core 505 can be a number determined
by an application, user or administrator and can be any
number greater than zero. In still other embodiments, load
can be allocated based on a time metric such that packets are
distributed to a particular core 505 for a predetermined
amount of time. In these embodiments, packets can be
distributed to a particular core 505 for five milliseconds or
for any period of time determined by a user, program,
system, administrator or otherwise. After the predetermined
time period elapses, data packets are transmitted to a dif-
ferent core 505 for the predetermined period of time.

Flow-based data parallelism methods for distributing
work, load or network traffic among the one or more cores
505 can comprise any combination of the above-mentioned
embodiments. These methods can be carried out by any part
of the appliance 200, by an application or set of executable
instructions executing on one of the cores 505, such as the
packet engine, or by any application, program or agent
executing on a computing device in communication with the
appliance 200.

The functional and data parallelism computing schemes
illustrated in FIG. 5A can be combined in any manner to
generate a hybrid parallelism or distributed processing
scheme that encompasses function parallelism 500, data
parallelism 540, flow-based data parallelism 520 or any
portions thereof. In some cases, the multi-core system may
use any type and form of load balancing schemes to dis-
tribute load among the one or more cores 505. The load
balancing scheme may be used in any combination with any
of the functional and data parallelism schemes or combina-
tions thereof.

Illustrated in FIG. 5B is an embodiment of a multi-core
system 545, which may be any type and form of one or more
systems, appliances, devices or components. This system
545, in some embodiments, can be included within an
appliance 200 having one or more processing cores S05A-N.
The system 545 can further include one or more packet
engines (PE) or packet processing engines (PPE) 548A-N
communicating with a memory bus 556. The memory bus
may be used to communicate with the one or more process-
ing cores 505A-N. Also included within the system 545 can
be one or more network interface cards (NIC) 552 and a flow
distributor 550 which can further communicate with the one
or more processing cores 505A-N. The flow distributor 550
can comprise a Receive Side Scaler (RSS) or Receive Side
Scaling (RSS) module 560.

Further referring to FIG. 5B, and in more detail, in one
embodiment the packet engine(s) 548 A-N can comprise any
portion of the appliance 200 described herein, such as any
portion of the appliance described in FIGS. 2A and 2B. The
packet engine(s) 548A-N can, in some embodiments, com-
prise any of the following elements: the packet engine 240,

10

20

25

30

35

40

45

50

55

60

65

46

a network stack 267; a cache manager 232; a policy engine
236; a compression engine 238; an encryption engine 234;
a GUI 210; a CLI 212; shell services 214; monitoring
programs 216; and any other software or hardware element
able to receive data packets from one of either the memory
bus 556 or the one of more cores S05A-N. In some embodi-
ments, the packet engine(s) 548A-N can comprise one or
more vServers 275A-N, or any portion thereof. In other
embodiments, the packet engine(s) 548 A-N can provide any
combination of the following functionalities: SSL. VPN 280;
Intranet UP 282; switching 284; DNS 286; packet accelera-
tion 288; App FW 280; monitoring such as the monitoring
provided by a monitoring agent 197; functionalities associ-
ated with functioning as a TCP stack; load balancing; SSL.
offloading and processing; content switching; policy evalu-
ation; caching; compression; encoding; decompression;
decoding; application firewall functionalities; XML process-
ing and acceleration; and SSL. VPN connectivity.

The packet engine(s) 548A-N can, in some embodiments,
be associated with a particular server, user, client or net-
work. When a packet engine 548 becomes associated with a
particular entity, that packet engine 548 can process data
packets associated with that entity. For example, should a
packet engine 548 be associated with a first user, that packet
engine 548 will process and operate on packets generated by
the first user, or packets having a destination address asso-
ciated with the first user. Similarly, the packet engine 548
may choose not to be associated with a particular entity such
that the packet engine 548 can process and otherwise operate
on any data packets not generated by that entity or destined
for that entity.

In some instances, the packet engine(s) 548A-N can be
configured to carry out the any of the functional and/or data
parallelism schemes illustrated in FIG. 5A. In these
instances, the packet engine(s) 548A-N can distribute func-
tions or data among the processing cores S05A-N so that the
distribution is according to the parallelism or distribution
scheme. In some embodiments, a single packet engine(s)
548A-N carries out a load balancing scheme, while in other
embodiments one or more packet engine(s) 548A-N carry
out a load balancing scheme. Each core 505A-N, in one
embodiment, can be associated with a particular packet
engine 548 such that load balancing can be carried out by the
packet engine. Load balancing may in this embodiment,
require that each packet engine 548A-N associated with a
core 505 communicate with the other packet engines asso-
ciated with cores so that the packet engines 548A-N can
collectively determine where to distribute load. One
embodiment of this process can include an arbiter that
receives votes from each packet engine for load. The arbiter
can distribute load to each packet engine 548A-N based in
part on the age of the engine’s vote and in some cases a
priority value associated with the current amount of load on
an engine’s associated core 505.

Any of the packet engines running on the cores may run
in user mode, kernel or any combination thereof. In some
embodiments, the packet engine operates as an application
or program running is user or application space. In these
embodiments, the packet engine may use any type and form
of interface to access any functionality provided by the
kernel. In some embodiments, the packet engine operates in
kernel mode or as part of the kernel. In some embodiments,
a first portion of the packet engine operates in user mode
while a second portion of the packet engine operates in
kernel mode. In some embodiments, a first packet engine on
a first core executes in kernel mode while a second packet
engine on a second core executes in user mode. In some

US 9,461,996 B2

47

embodiments, the packet engine or any portions thereof
operates on or in conjunction with the NIC or any drivers
thereof.

In some embodiments, the memory bus 556 can be any
type and form of memory or computer bus. While a single
memory bus 556 is depicted in FIG. 5B, the system 545 can
comprise any number of memory buses 556. In one embodi-
ment, each packet engine 548 can be associated with one or
more individual memory buses 556.

The NIC 552 can in some embodiments be any of the
network interface cards or mechanisms described herein.
The NIC 552 can have any number of ports. The NIC can be
designed and constructed to connect to any type and form of
network 104. While a single NIC 552 is illustrated, the
system 545 can comprise any number of NICs 552. In some
embodiments, each core 505A-N can be associated with one
or more single NICs 552. Thus, each core 505 can be
associated with a single NIC 552 dedicated to a particular
core 505. The cores 505A-N can comprise any of the
processors described herein. Further, the cores 505A-N can
be configured according to any of the core 505 configura-
tions described herein. Still further, the cores 505A-N can
have any of the core 505 functionalities described herein.
While FIG. 5B illustrates seven cores 505A-G, any number
of cores 505 can be included within the system 545. In
particular, the system 545 can comprise “N” cores, where
“N” is a whole number greater than zero.

A core may have or use memory that is allocated or
assigned for use to that core. The memory may be consid-
ered private or local memory of that core and only accessible
by that core. A core may have or use memory that is shared
or assigned to multiple cores. The memory may be consid-
ered public or shared memory that is accessible by more than
one core. A core may use any combination of private and
public memory. With separate address spaces for each core,
some level of coordination is eliminated from the case of
using the same address space. With a separate address space,
a core can perform work on information and data in the
core’s own address space without worrying about conflicts
with other cores. Each packet engine may have a separate
memory pool for TCP and/or SSL connections.

Further referring to FIG. 5B, any of the functionality
and/or embodiments of the cores 505 described above in
connection with FIG. 5A can be deployed in any embodi-
ment of the virtualized environment described above in
connection with FIGS. 4A and 4B. Instead of the function-
ality of the cores 505 being deployed in the form of a
physical processor 505, such functionality may be deployed
in a virtualized environment 400 on any computing device
100, such as a client 102, server 106 or appliance 200. In
other embodiments, instead of the functionality of the cores
505 being deployed in the form of an appliance or a single
device, the functionality may be deployed across multiple
devices in any arrangement. For example, one device may
comprise two or more cores and another device may com-
prise two or more cores. For example, a multi-core system
may include a cluster of computing devices, a server farm or
network of computing devices. In some embodiments,
instead of the functionality of the cores 505 being deployed
in the form of cores, the functionality may be deployed on
a plurality of processors, such as a plurality of single core
processors.

In one embodiment, the cores 505 may be any type and
form of processor. In some embodiments, a core can func-
tion substantially similar to any processor or central pro-
cessing unit described herein. In some embodiment, the
cores 505 may comprise any portion of any processor

25

30

40

45

50

55

48

described herein. While FIG. 5A illustrates seven cores,
there can exist any “N” number of cores within an appliance
200, where “N” is any whole number greater than one. In
some embodiments, the cores 505 can be installed within a
common appliance 200, while in other embodiments the
cores 505 can be installed within one or more appliance(s)
200 communicatively connected to one another. The cores
505 can in some embodiments comprise graphics processing
software, while in other embodiments the cores 505 provide
general processing capabilities. The cores 505 can be
installed physically near each other and/or can be commu-
nicatively connected to each other. The cores may be con-
nected by any type and form of bus or subsystem physically
and/or communicatively coupled to the cores for transferring
data between to, from and/or between the cores.

While each core 505 can comprise software for commu-
nicating with other cores, in some embodiments a core
manager (not shown) can facilitate communication between
each core 505. In some embodiments, the kernel may
provide core management. The cores may interface or
communicate with each other using a variety of interface
mechanisms. In some embodiments, core to core messaging
may be used to communicate between cores, such as a first
core sending a message or data to a second core via a bus or
subsystem connecting the cores. In some embodiments,
cores may communicate via any type and form of shared
memory interface. In one embodiment, there may be one or
more memory locations shared among all the cores. In some
embodiments, each core may have separate memory loca-
tions shared with each other core. For example, a first core
may have a first shared memory with a second core and a
second share memory with a third core. In some embodi-
ments, cores may communicate via any type of program-
ming or API, such as function calls via the kernel. In some
embodiments, the operating system may recognize and
support multiple core devices and provide interfaces and
API for inter-core communications.

The flow distributor 550 can be any application, program,
library, script, task, service, process or any type and form of
executable instructions executing on any type and form of
hardware. In some embodiments, the flow distributor 550
may any design and construction of circuitry to perform any
of the operations and functions described herein. In some
embodiments, the flow distributor distribute, forwards,
routes, controls and/ors manage the distribution of data
packets among the cores 505 and/or packet engine or VIPs
running on the cores. The flow distributor 550, in some
embodiments, can be referred to as an interface master. In
one embodiment, the flow distributor 550 comprises a set of
executable instructions executing on a core or processor of
the appliance 200. In another embodiment, the flow dis-
tributor 550 comprises a set of executable instructions
executing on a computing machine in communication with
the appliance 200. In some embodiments, the flow distribu-
tor 550 comprises a set of executable instructions executing
on a NIC, such as firmware. In still other embodiments, the
flow distributor 550 comprises any combination of software
and hardware to distribute data packets among cores or
processors. In one embodiment, the flow distributor 550
executes on at least one of the cores 505A-N, while in other
embodiments a separate flow distributor 550 assigned to
each core 505A-N executes on an associated core S05A-N.
The flow distributor may use any type and form of statistical
or probabilistic algorithms or decision making to balance the
flows across the cores. The hardware of the appliance, such
as a NIC, or the kernel may be designed and constructed to
support sequential operations across the NICs and/or cores.

US 9,461,996 B2

49

In embodiments where the system 545 comprises one or
more flow distributors 550, each flow distributor 550 can be
associated with a processor 505 or a packet engine 548. The
flow distributors 550 can comprise an interface mechanism
that allows each flow distributor 550 to communicate with
the other flow distributors 550 executing within the system
545. In one instance, the one or more flow distributors 550
can determine how to balance load by communicating with
each other. This process can operate substantially similarly
to the process described above for submitting votes to an
arbiter which then determines which flow distributor 550
should receive the load. In other embodiments, a first flow
distributor 550' can identify the load on an associated core
and determine whether to forward a first data packet to the
associated core based on any of the following criteria: the
load on the associated core is above a predetermined thresh-
0ld; the load on the associated core is below a predetermined
threshold; the load on the associated core is less than the
load on the other cores; or any other metric that can be used
to determine where to forward data packets based in part on
the amount of load on a processor.

The flow distributor 550 can distribute network traffic
among the cores 505 according to a distribution, computing
or load balancing scheme such as those described herein. In
one embodiment, the flow distributor can distribute network
traffic according to any one of a functional parallelism
distribution scheme 550, a data parallelism load distribution
scheme 540, a flow-based data parallelism distribution
scheme 520, or any combination of these distribution
scheme or any load balancing scheme for distributing load
among multiple processors. The flow distributor 550 can
therefore act as a load distributor by taking in data packets
and distributing them across the processors according to an
operative load balancing or distribution scheme. In one
embodiment, the flow distributor 550 can comprise one or
more operations, functions or logic to determine how to
distribute packers, work or load accordingly. In still other
embodiments, the flow distributor 550 can comprise one or
more sub operations, functions or logic that can identify a
source address and a destination address associated with a
data packet, and distribute packets accordingly.

In some embodiments, the flow distributor 550 can com-
prise a receive-side scaling (RSS) network driver, module
560 or any type and form of executable instructions which
distribute data packets among the one or more cores 505.
The RSS module 560 can comprise any combination of
hardware and software, In some embodiments, the RSS
module 560 works in conjunction with the flow distributor
550 to distribute data packets across the cores 505A-N or
among multiple processors in a multi-processor network.
The RSS module 560 can execute within the NIC 552 in
some embodiments, and in other embodiments can execute
on any one of the cores 505.

In some embodiments, the RSS module 560 uses the
MICROSOFT receive-side-scaling (RSS) scheme. In one
embodiment, RSS is a Microsoft Scalable Networking ini-
tiative technology that enables receive processing to be
balanced across multiple processors in the system while
maintaining in-order delivery of the data. The RSS may use
any type and form of hashing scheme to determine a core or
processor for processing a network packet.

The RSS module 560 can apply any type and form hash
function such as the Toeplitz hash function. The hash
function may be applied to the hash type or any the sequence
of values. The hash function may be a secure hash of any
security level or is otherwise cryptographically secure. The
hash function may use a hash key. The size of the key is

20

40

45

50

55

50

dependent upon the hash function. For the Toeplitz hash, the
size may be 40 bytes for IPv6 and 16 bytes for IPv4.

The hash function may be designed and constructed based
on any one or more criteria or design goals. In some
embodiments, a hash function may be used that provides an
even distribution of hash result for different hash inputs and
different hash types, including TCP/IPv4, TCP/IPv6, IPv4,
and IPv6 headers. In some embodiments, a hash function
may be used that provides a hash result that is evenly
distributed when a small number of buckets are present (for
example, two or four). In some embodiments, hash function
may be used that provides a hash result that is randomly
distributed when a large number of buckets were present (for
example, 64 buckets). In some embodiments, the hash
function is determined based on a level of computational or
resource usage. In some embodiments, the hash function is
determined based on ease or difficulty of implementing the
hash in hardware. In some embodiments, the hash function
is determined based on the ease or difficulty of a malicious
remote host to send packets that would all hash to the same
bucket.

The RSS may generate hashes from any type and form of
input, such as a sequence of values. This sequence of values
can include any portion of the network packet, such as any
header, field or payload of network packet, or portions
thereof. In some embodiments, the input to the hash may be
referred to as a hash type and include any tuples of infor-
mation associated with a network packet or data flow, such
as any of the following: a four tuple comprising at least two
IP addresses and two ports; a four tuple comprising any four
sets of values; a six tuple; a two tuple; and/or any other
sequence of numbers or values. The following are example
of hash types that may be used by RSS:

4-tuple of source TCP Port, source 1P version 4 (IPv4)

address, destination TCP Port, and destination 1Pv4
address.

4-tuple of source TCP Port, source 1P version 6 (IPv6)

address, destination TCP Port, and destination IPv6
address.

2-tuple of source IPv4 address, and destination IPv4

address.

2-tuple of source IPv6 address, and destination IPv6

address.

2-tuple of source IPv6 address, and destination IPv6

address, including support for parsing IPv6 extension
headers.

The hash result or any portion thereof may used to
identify a core or entity, such as a packet engine or VIP, for
distributing a network packet. In some embodiments, one or
more hash bits or mask are applied to the hash result. The
hash bit or mask may be any number of bits or bytes. A NIC
may support any number of bits, such as seven bits. The
network stack may set the actual number of bits to be used
during initialization. The number will be between 1 and 7,
inclusive.

The hash result may be used to identify the core or entity
via any type and form of table, such as a bucket table or
indirection table. In some embodiments, the number of
hash-result bits are used to index into the table. The range of
the hash mask may effectively define the size of the indi-
rection table. Any portion of the hash result or the hast result
itself may be used to index the indirection table. The values
in the table may identify any of the cores or processor, such
as by a core or processor identifier. In some embodiments,
all of the cores of the multi-core system are identified in the
table. In other embodiments, a port of the cores of the
multi-core system are identified in the table. The indirection

US 9,461,996 B2

51

table may comprise any number of buckets for example 2 to
128 buckets that may be indexed by a hash mask. Each
bucket may comprise a range of index values that identify a
core or processor. In some embodiments, the flow controller
and/or RSS module may rebalance the network rebalance
the network load by changing the indirection table.

In some embodiments, the multi-core system 575 does not
include a RSS driver or RSS module 560. In some of these
embodiments, a software steering module (not shown) or a
software embodiment of the RSS module within the system
can operate in conjunction with or as part of the flow
distributor 550 to steer packets to cores 505 within the
multi-core system 575. The flow distributor 550, in some
embodiments, executes within any module or program on
the appliance 200, on any one of the cores 505 and on any
one of the devices or components included within the
multi-core system 575. In some embodiments, the flow
distributor 550' can execute on the first core 505A, while in
other embodiments the flow distributor 550" can execute on
the NIC 552. In still other embodiments, an instance of the
flow distributor 550' can execute on each core 505 included
in the multi-core system 575. In this embodiment, each
instance of the flow distributor 550' can communicate with
other instances of the flow distributor 550' to forward
packets back and forth across the cores 505. There exist
situations where a response to a request packet may not be
processed by the same core, i.e. the first core processes the
request while the second core processes the response. In
these situations, the instances of the flow distributor 550' can
intercept the packet and forward it to the desired or correct
core 505, i.e. a flow distributor instance 550" can forward the
response to the first core. Multiple instances of the flow
distributor 550' can execute on any number of cores 505 and
any combination of cores 505.

The flow distributor may operate responsive to any one or
more rules or policies. The rules may identify a core or
packet processing engine to receive a network packet, data
or data flow. The rules may identify any type and form of
tuple information related to a network packet, such as a
4-tuple of source and destination IP address and source and
destination ports. Based on a received packet matching the
tuple specified by the rule, the flow distributor may forward
the packet to a core or packet engine. In some embodiments,
the packet is forwarded to a core via shared memory and/or
core to core messaging.

Although FIG. 5B illustrates the flow distributor 550 as
executing within the multi-core system 575, in some
embodiments the flow distributor 550 can execute on a
computing device or appliance remotely located from the
multi-core system 575. In such an embodiment, the flow
distributor 550 can communicate with the multi-core system
575 to take in data packets and distribute the packets across
the one or more cores 505. The flow distributor 550 can, in
one embodiment, receive data packets destined for the
appliance 200, apply a distribution scheme to the received
data packets and distribute the data packets to the one or
more cores 505 of the multi-core system 575. In one
embodiment, the flow distributor 550 can be included in a
router or other appliance such that the router can target
particular cores 505 by altering meta data associated with
each packet so that each packet is targeted towards a
sub-node of the multi-core system 575. In such an embodi-
ment, CISCO’s vn-tag mechanism can be used to alter or tag
each packet with the appropriate meta data.

Illustrated in FIG. 5C is an embodiment of a multi-core
system 575 comprising one or more processing cores 505A-
N. In brief overview, one of the cores 505 can be designated

20

35

40

45

52

as a control core 505A and can be used as a control plane 570
for the other cores 505. The other cores may be secondary
cores which operate in a data plane while the control core
provides the control plane. The cores 505A-N may share a
global cache 580. While the control core provides a control
plane, the other cores in the multi-core system form or
provide a data plane. These cores perform data processing
functionality on network traffic while the control provides
initialization, configuration and control of the multi-core
system.

Further referring to FIG. 5C, and in more detail, the cores
505A-N as well as the control core 505A can be any
processor described herein. Furthermore, the cores 505A-N
and the control core 505A can be any processor able to
function within the system 575 described in FIG. 5C. Still
further, the cores 505A-N and the control core 505A can be
any core or group of cores described herein. The control core
may be a different type of core or processor than the other
cores. In some embodiments, the control may operate a
different packet engine or have a packet engine configured
differently than the packet engines of the other cores.

Any portion of the memory of each of the cores may be
allocated to or used for a global cache that is shared by the
cores. In brief overview, a predetermined percentage or
predetermined amount of each of the memory of each core
may be used for the global cache. For example, 50% of each
memory of each code may be dedicated or allocated to the
shared global cache. That is, in the illustrated embodiment,
2 GB of each core excluding the control plane core or core
1 may be used to form a 28 GB shared global cache. The
configuration of the control plane such as via the configu-
ration services may determine the amount of memory used
for the shared global cache. In some embodiments, each core
may provide a different amount of memory for use by the
global cache. In other embodiments, any one core may not
provide any memory or use the global cache. In some
embodiments, any of the cores may also have a local cache
in memory not allocated to the global shared memory. Each
of the cores may store any portion of network traffic to the
global shared cache. Each of the cores may check the cache
for any content to use in a request or response. Any of the
cores may obtain content from the global shared cache to use
in a data flow, request or response.

The global cache 580 can be any type and form of
memory or storage element, such as any memory or storage
element described herein. In some embodiments, the cores
505 may have access to a predetermined amount of memory
(i.e. 32 GB or any other memory amount commensurate
with the system 575). The global cache 580 can be allocated
from that predetermined amount of memory while the rest of
the available memory can be allocated among the cores 505.
In other embodiments, each core 505 can have a predeter-
mined amount of memory. The global cache 580 can com-
prise an amount of the memory allocated to each core 505.
This memory amount can be measured in bytes, or can be
measured as a percentage of the memory allocated to each
core 505. Thus, the global cache 580 can comprise 1 GB of
memory from the memory associated with each core 505, or
can comprise 20 percent or one-half of the memory associ-
ated with each core 505. In some embodiments, only a
portion of the cores 505 provide memory to the global cache
580, while in other embodiments the global cache 580 can
comprise memory not allocated to the cores 505.

Each core 505 can use the global cache 580 to store
network traffic or cache data. In some embodiments, the
packet engines of the core use the global cache to cache and
use data stored by the plurality of packet engines. For

US 9,461,996 B2

53

example, the cache manager of FIG. 2A and cache func-
tionality of FIG. 2B may use the global cache to share data
for acceleration. For example, each of the packet engines
may store responses, such as HTML data, to the global
cache. Any of the cache managers operating on a core may
access the global cache to server caches responses to client
requests.

In some embodiments, the cores 505 can use the global
cache 580 to store a port allocation table which can be used
to determine data flow based in part on ports. In other
embodiments, the cores 505 can use the global cache 580 to
store an address lookup table or any other table or list that
can be used by the flow distributor to determine where to
direct incoming and outgoing data packets. The cores 505
can, in some embodiments read from and write to cache 580,
while in other embodiments the cores 505 can only read
from or write to cache 580. The cores may use the global
cache to perform core to core communications.

The global cache 580 may be sectioned into individual
memory sections where each section can be dedicated to a
particular core 505. In one embodiment, the control core
505A can receive a greater amount of available cache, while
the other cores 505 can receiving varying amounts or access
to the global cache 580.

In some embodiments, the system 575 can comprise a
control core 505A. While FIG. 5C illustrates core 1 505A as
the control core, the control core can be any core within the
appliance 200 or multi-core system. Further, while only a
single control core is depicted, the system 575 can comprise
one or more control cores each having a level of control over
the system. In some embodiments, one or more control cores
can each control a particular aspect of the system 575. For
example, one core can control deciding which distribution
scheme to use, while another core can determine the size of
the global cache 580.

The control plane of the multi-core system may be the
designation and configuration of a core as the dedicated
management core or as a master core. This control plane
core may provide control, management and coordination of
operation and functionality the plurality of cores in the
multi-core system. This control plane core may provide
control, management and coordination of allocation and use
of memory of the system among the plurality of cores in the
multi-core system, including initialization and configuration
of the same. In some embodiments, the control plane
includes the flow distributor for controlling the assignment
of data flows to cores and the distribution of network packets
to cores based on data flows. In some embodiments, the
control plane core runs a packet engine and in other embodi-
ments, the control plane core is dedicated to management
and control of the other cores of the system.

The control core 505A can exercise a level of control over
the other cores 505 such as determining how much memory
should be allocated to each core 505 or determining which
core 505 should be assigned to handle a particular function
or hardware/software entity. The control core 505 A, in some
embodiments, can exercise control over those cores 505
within the control plan 570. Thus, there can exist processors
outside of the control plane 570 which are not controlled by
the control core 505A. Determining the boundaries of the
control plane 570 can include maintaining, by the control
core 505A or agent executing within the system 575, a list
of those cores 505 controlled by the control core 505A. The
control core 505A can control any of the following: initial-
ization of a core; determining when a core is unavailable;
re-distributing load to other cores 505 when one core fails;
determining which distribution scheme to implement; deter-

10

15

20

25

30

35

40

45

50

55

60

65

54

mining which core should receive network traffic; determin-
ing how much cache should be allocated to each core;
determining whether to assign a particular function or ele-
ment to a particular core; determining whether to permit
cores to communicate with one another; determining the size
of the global cache 580; and any other determination of a
function, configuration or operation of the cores within the
system S575.

F. Policy Based Transparent Client IP Address Insertion

Referring now to FIG. 6A, an embodiment of a system for
maintaining a source internet protocol (IP) address of a
client request while redirecting the client request to a cache
server. In brief overview of FIG. 6A, an intermediary device,
also referred to as an intermediary 200 or appliance 200, is
deployed between one or more clients 102 and one or more
servers 106. The intermediary 200 includes a packet engine
548 comprising a cache redirector 600. The cache redirector
600 may include a configuration 605 and a policy 610. The
intermediary 200 may be in communication with a cache
server 620. Cache redirector 600 may redirect network
packets, such a request from the client 102, to the cache
server 620 for faster access to the content requested by the
client 102. Prior to sending the client request to the cache
server 620, cache redirector 600 may implement functions to
maintain the original source IP address from the client
request even if the client request sent to the cache server 620
is returned by the cache server 620.

In further overview, the intermediary may establish a
transport layer connection with the client, referred to for
convenience as a first transport layer connection. The inter-
mediary may establish another transport layer connection
with the cache server, referred to for convenience as a
second transport layer connection. The cache server may
establish a transport layer connection with the intermediary,
referred to for convenience as a third transport layer con-
nection. The intermediary may establish a transport layer
connection with the server, referred to for convenience as a
fourth transport layer connection.

The system depicted in FIG. 6A may correspond to an
embodiment in which an intermediary 200 uses the cache
redirector 600 along with the configuration 605 and policy
610 to modify client requests to ensure that the source IP
address of the client requests is maintained. As the interme-
diary may use a cache server 620 for caching of content
requested by the clients 102 in order to facilitate a more
efficient access to the content, the intermediary 200 may
forward a client request to a cache server 620. In order to
ensure that the client IP address of the client request is
preserved as the source IP address, the intermediary 200 may
insert the client IP address into the header of the client
request prior to forwarding the request to the cache server
620. In such embodiments, should the cache server 620
determine that the content requested is not cached by the
cache server 620 or that the requested content is expired,
outdated or invalid, the cache server 620 may return the
client request back to the intermediary 200. Since the
original source IP address of the client request was entered
in the header of the request, the intermediary 200 may still
retrieve the original source IP address even though the client
request was received from the cache server 620. The inter-
mediary 200 may then forward the client request even upon
the cache miss by the cache server 620 to the intended
destination server 106 while maintaining or preserving the
client IP address as the source IP address.

Cache redirector 600 may comprise any hardware, soft-
ware or any combination of hardware and software for
redirecting, forwarding, modifying or managing network

US 9,461,996 B2

55

packets transmitted between the intermediary 200 and the
cache server 620. Cache redirector may comprise any func-
tionality of a virtual server 275 or a backup virtual server
276. In some embodiments, cache redirector 600 is a virtual
server configured on an intermediary 200. In some embodi-
ments, a virtual server may be configured as a Cache
Redirector vServer, referred to as a CR vserver. Cache
redirector 600 may include any logic circuits, processors,
functions, programs, algorithms or components that alone,
or in combination, may provide functionality for redirecting,
forwarding, modifying or managing network packets tra-
versing the intermediary 200. Cache redirector 600 may
include any functionality to modify, redirect and forward
network packets, such as the client requests, server
responses, or any data or communication to a cache server
620.

Cache redirector 600 may also include any functionality
to receive and manage any responses or requests that are
received from the cache server 620. In some embodiments,
cache redirector 600 communicates, redirects, receives or
forwards network packets to and from any network devices
or environments, such as other appliances 200, application
servers, proxies, routers, virtual servers 275, other clients
102 or servers 106. Cache redirector 620 may include
functions, algorithms, devices and components for estab-
lishing, terminating, controlling or managing any connec-
tions with a cache server 620. Cache redirector 600 may
modify, edit or rewrite a portion of a network packet, such
as for example a header or a body of the network packet. In
some embodiments, cache redirector 600 modifies or edits a
client request redirected or forwarded to a cache server 620
such that an internet protocol address is included or written
in a portion of the client request. In further embodiments,
cache server 600 modifies or edits a client request received
from the cache server 620 to include the IP address stored in
the header of the request as the source IP address of the
client request. Cache redirector 600 may be comprised by, or
in communication with, any of the packet engine 548, virtual
server 275, or any other component of the intermediary 200.
Cache redirector 600 may include any number of configu-
rations or settings, such as configuration 605. Cache redi-
rector 600 may include any number of rules or policies such
as policy 610.

Cache redirector 600 may be configured to include any
feature or functionality to support any type and form of
protocol or system configuration. In some embodiments,
cache redirector is configured to support HTTP and TCP-
based protocols. In some embodiments, cache redirector 600
is configured for TCP-based protocols, IP based protocols or
any protocols of communication at any level of the network
stack. Cache redirector 600 may include one or more modes
of operation for redirecting or forwarding the network traffic
between any network devices on a network 104. In some
embodiments, cache redirector 600 includes a mode for
forwarding or receiving the network traffic to and from an
origin server or a destination server. Cache redirector 600
may also include a mode for forwarding and receiving the
network traffic in accordance with one or more policies
which may be configured on the system. Cache redirector
600 may be configured to forward network traffic across one
or more virtual servers 275. Cache redirector 600 may be
configured to perform any actions or operations based on
any number of cache redirection policies, such as a policy
610. The cache redirection policies, such as the policy 610,
may provide cache redirector 600 with information to iden-
tify cacheable and non-cacheable requests for every com-
munication which may include any type and form of a TCP

10

20

25

30

40

45

55

60

65

56

communication, HTTP transaction or any other communi-
cation transmitted between the client 102 and server 106 via
the intermediary 200.

Configuration 605 may include any type and form of
setting, instruction or a parameter for identifying, activating
or triggering operation for maintaining or preserving an IP
address of a network packet by the cache redirector 600.
Configuration 605 may include a parameter, a setting, a
function, an instruction, a character, a string or a command.
Configuration 605 may be stored in any memory location of
intermediary 200 or cache redirector 600. In some embodi-
ments, configuration 605 is stored within one or more
instructions or policies for managing operation of interme-
diary 200 or the cache server 620. Configuration 605 may be
connection based, session based, client 102 based, server
106 based or based on any configuration by a user or an
administrator. Configuration 605 may be set or configured
for all network packets transmitted via a particular connec-
tion, a particular session, from a particular client 102 or a
user on the client 102 or transmitted in connection with a
particular server 106. In certain embodiments, configuration
605 is preconfigured or preset by a user. Configuration 605
may be installed on the cache redirector 600 or the inter-
mediary 200 in accordance with a setting for a policy 610.
In some embodiments, configuration 605 is received from a
client 102 or a server 106 to specify the handling of the IP
addresses, such as the preservation of the source or the
destination IP address by the intermediary 200 and the cache
server 620 upon missed cache requests.

Configuration 605 may identify or trigger a set of policies
or instructions for operations to be performed to the network
packets being forwarded or transmitted between the cache
redirector 600 and cache server 620. In some embodiments,
configuration 605 includes an information identifying or
triggering an operation to write or include an IP address of
a network packet inside of a portion of the network packet
such as the header or the body. In some embodiments, the IP
address to be included is the source IP address, such as the
IP address of the source client 102 which originally trans-
mitted the network packet. In some embodiments, configu-
ration 605 identifies a policy 610 that identifies a set of rules
or instructions identifying for which network packets to
maintain or preserve the IP address. Configuration 605 may
identify for the cache redirector 600 that network traffic of
a particular connection or a session that will be serviced so
that the source IP address of the received network packet is
preserved even if the network packet is sent to a cache server
620 and received from the cache server 620. In some
embodiments, configuration 605 identifies that the network
packets from a specific client 102 or to a specific server 106
will be serviced to maintain the source IP address of the
network packet.

Configuration 605 may include an instruction or a direc-
tive for identifying a policy 610 to be used by the cache
redirector 600 to modify the network packets forwarded to
the cache server 620. Configuration 605 may include an
information or a setting for determining whether or not to
maintain original source IP address from a received request.
For example, configuration 605 may identify a specific
operation which preserves a source IP address of a network
packet in accordance to a policy 610. The configuration 605
may identity a policy 610 which may further specify a set of
steps or operations to be performed by the intermediary 200,
cache redirector 600 on the network packet. In some
embodiments, such set of steps includes instructions to copy
a source [P address of the network packet into a string of a

US 9,461,996 B2

57

portion of a header of the network packet, prior to forward-
ing the network packet to the cache server 620.

A configuration 605 of a cache redirector 600 of the
intermediary device 200 may further include settings or
expressions for extracting or obtaining an IP address from a
network packet received from a cache server 620. A con-
figuration 605 of the cache redirector 600 may include
instructions or code, such as the following:

add cr vserver crl http*80-originUSIP (ONIOFF)-srcIP-

Expr <PI expression>.

The value of the originUSIP may be OFF or ON, depending
on the configuration. In some embodiments, a value of ON
indicates to maintain the original IP address of the client
when communicating to the server and value OFF indicates
not maintain the original IP address. The expression “srcl-
PEXPR” may be an expression used to extract a string from
the request, such as the client request. This extracted string
may be converted into an IP address. In some embodiments,
a request may be received or returned from a cache server
when the cache server cannot provide content requested by
the request. In such embodiments, upon receiving the client
request from a cache server, cache redirector may determine
that expression srcIPExpr has been configured. In response
to this determination, cache redirector may convert the
extracted string to an IP address. This address may then be
used to override globalUSIP or Originusip configurations if
necessary. In some embodiments, if a client request received
from a cache server 620 is destined to a destination, and if
the originUSIP has been configured on the cache redirector,
then the outgoing connection may be created using the client
connection Source [P and the client request may be for-
warded to the intended destination.

The configuration may include one or more policies for
directed whether to maintain the client IP address and rules
on how to maintain the IP address. For example, the con-
figuration may comprise the following policy information:

add cr vserver crl http*80-originUSIP (ONIOFF)-srcIP-

Expr <PI expression>.
The originUSIP may be a policy for the cr Vserver to
determine whether or not to maintain the original client IP
address. The srcIPExpr may be a rule of the policy to
determine how to obtain the client IP address from the
redirected packet from the cache.

The intermediary device and/or cache redirector may
include any embodiment of a policy engine 236 or 195 as
previously described herein. The policy engine may operate
on or execute any one or more policies. Policy 610 may
include any configuration or information for maintaining IP
address of a network packet, such as a policy for a CR
vServer. Policy 610 may comprise an algorithm, an execut-
able, an instruction code, a computer program, a configu-
ration, a command or a directive. Policy 610 may be stored
in memory of the intermediary 200 or cache server 620. In
some embodiments, policy 610 includes a rule identifying or
providing a set of instructions to be implemented by the
cache redirector 600 or the cache server 620. The set of
instructions identified or provided by the policy 610 may be
for writing or copying an IP address into a portion of a
network packet. In some embodiments, the set of instruc-
tions are for retrieving the IP address from the portion of the
network packet. In further embodiments, the set of instruc-
tions are for inserting the retrieved IP address back into the
network packet or modifying the network packet to the state
or configuration it was in before being received by the
intermediary device 200.

Policy 610 may provide any policy or one or more rules
for cache redirector 600 or the cache server 620 to handle,

10

25

30

40

45

55

65

58

edit or modify a network packet in order to maintain an IP
address, such as the source IP address or the destination IP
address. Policy 610 may include or identify a set of rules or
tasks for storing, copying or writing an IP address of a
network packet into a portion of the network packet, such as
the header or the body of the same network packet. In some
embodiments, policy 610 identifies or provides rules for
storing or writing an IP address of a first network packet into
a header or a body of a second network packet. The second
network packet may enclose or comprise the first network
packet. Policy 610 may further identify or provide a set of
rules or tasks for retrieving an IP address from a portion of
the network packet or from the portion of the second
network packet. In some embodiments, policy 610 identifies
actions or steps for writing an IP address into a header of a
network packet in a form of a string of characters, numbers
or letters. Policy 610 may be triggered on the cache server
620 for maintaining the IP address while the network packet
is handled by the cache server 620. Policy 610 may include
any functionality for instructing the cache redirector 600 or
the cache server 60 to modify a network packet accordingly
so that the source IP address or the destination IP address of
the network packet will be preserved even if the cache server
620 returns the network packet back to the intermediary 200
upon not fulfilling a request to retrieve the content requested
by the network packet.

Cache server 620 may comprise any hardware, software
or a combination of hardware and software for locally
storing and providing the content requested by clients 102.
Cache server 620 may comprise any functionality of a server
106, cache engine, proxy server or an intermediary 200,
including processors, memory and the functionality to com-
municate with other network devices. Cache server 620 may
comprise any functionality for locally storing any content,
such as the web pages or other internet content provided by
other servers 106. Cache server 620 may include any func-
tionality to provide the locally stored content, such as the
web pages or other internet content to the intermediary 200.
In some embodiments, cache server 620 receives from the
intermediary 200 requests, such as client requests, for con-
tent stored in the storage of the cache server 620. Cache
server 620 may include any functionality for determining if
the stored content is present in the memory. In some
embodiments, the cache server 620 determines if the content
requested by the request is valid or invalid. In some embodi-
ments, valid content may be content that is stored and not
expired or not outdated. In some embodiments, invalid
content may be content that is not stored or that is stored but
outdated, expired or corrupted. Cache server 620 may send
to the intermediary 200 the content requested by the request
if the content is valid. In some embodiments, if the content
is invalid or the cache server 620 cannot find or fulfill the
request, the cache server 620 sends the request back to the
intermediary 200.

Cache server 620 may be configured to handle to preserve
an original source IP address of request received from the
intermediary 200 upon returning of the request back to the
intermediary 200. In some embodiments, cache server 620 is
configured such that the source IP address or the destination
IP address of the request is maintained or preserved within
the request sent back to the intermediary even if the content
requested by the request is not sent back to the intermediary
200. In some embodiments, cache server 620 is aware of the
configuration 605 and policy 610 of the intermediary 200. In
other embodiments, cache server 620 is not aware of the
configuration 605 and policy 610 of the intermediary 200. In
some embodiments, the source IP address of the request is

US 9,461,996 B2

59

modified by cache server 620 to include the IP address of the
intermediary 200 instead of the original source IP address. In
other embodiments, the source IP address of the request is
not modified by the cache server 620. Cache server 620 may
include functionality to maintain the original source IP
address of the request within the header of the request as
inserted by the cache redirector 620 prior to forwarding the
request to the cache server 620. Cache server 620 may send
the request back to the intermediary 200 via the same
connection via which the request was received or via a
different or new connection.

Referring now to FIG. 6B, an embodiment of steps of a
method for maintaining a source IP address of a client 102
request received from a cache server 620 upon a cache miss
by the cache server 620 is illustrated. At step 605, an
intermediary network device 200 receives from a client 102
a request destined to server 106, where the request identifies
an IP address of the client 102 as the source IP address. At
step 610, the intermediary 200 determines that the client
request is for content that may be cached by the cache server
620. At step 615, the intermediary 200 transmits to the cache
server 620 the client request as a cache request which is
modified to include the IP address of the client 106 in the
header of cache request. At step 620, the intermediary
receives from the cache server 620 a returned cache request
in response to a cache miss by the cache server. The returned
cache request includes the client IP address in the header and
a source IP address that is modified by the cache server 620.
At step 625, the intermediary 200 obtains the client IP
address from the header of the cache request in response to
a policy 610. At step 630, the intermediary 200 transmits to
the destination server 106 the client request that includes the
IP address of the client 102 as the source IP address of the
client request.

At step 605, an intermediary device 200 receives from a
client 102 a client request destined for server 106 and
identifying the IP address of the client 102 as the source IP
address. The client request may be received via a transport
layer connection between the client and intermediary device.
The intermediary device may receive a plurality of requests
from one or more clients. In some embodiments, the inter-
mediary receives the request via an established transport
layer connection, such as a TCP connection. In other
embodiments, the intermediary 200 receives the request via
an established session to a client 102 or a session between
a client 102 and a server 106. The client request may request
for a particular type and form of content or service provided
by server 106. The client request may comprise a URL for
a particular page, which may further identify one or more
objects to be received by the requesting client. In some
embodiments, the content requested by the client request
includes any type and form of web content, such as the
HTTP, HTML, XML, audio, video, graphics, presentation,
data stream or any type and form of service or application
content.

At step 610, intermediary 200 determines that the client
request is for content that may be cached. In some embodi-
ments, intermediary 200 parses the client request. The
intermediary 200 may identify, via parsing, that a portion of
the request references a webpage, a file, a picture, a video or
audio stream, a graphical feature, a portion of text or a
document. The intermediary 200 may determine that a
portion of the request, such as the URL, a portion of the text,
a document or an object identifies content that may be
cached. Intermediary 200 may determine that any portion of
the client request identifies components which may be stored
or cached at a cache server 620. The intermediary 200 may

20

30

35

40

45

50

55

60

make a determination using a compression history or history
of the network traffic traversed. In some embodiments, the
intermediary 200 maintains a communication with the cache
server 620 and receives information from the cache server
620 to be used to identify the content that may be cached. In
some embodiments, the intermediary may determine that the
client request may be for cacheable content based on one or
more policies.

At step 615, the cache redirector 600 modifies the client
request to include the IP address of the client from the source
of the client request into the header of the client request and
transmits the modified client request to the cache server 620
as a cache request. Intermediary 200 may transmit to cache
server 620 the client request via a connection established
between intermediary 200 and cache server 620. The cache
redirector 600 may transmit the modified client request as
the cache request via a second transport layer connection
between the intermediary and the cache server while the
intermediary previous received the client request via a first
transport layer connection between the intermediary and the
client. In some embodiments, the client request is modified
and transmitted to the cache server 620 as the cache request
in response to the determination, at step 610, that the client
request is for the content that may be cached.

The cache request may be the modified client request to
include the IP address in the portion of the client request,
such as the header or the body. In some embodiments, the
cache request is a network packet that encloses or includes
the client request. The cache redirector 600 may store or
write a source IP address and/or a destination IP address
from the original client request into the header of the cache
request. In some embodiments, cache redirector 600 copies
the IP address from the source of the client request and/or
from the destination of the client request into a portion of the
client request prior to forwarding the request to the cache
server 620 as the cache request. In certain embodiments, the
client IP address is obtained from the source IP location of
the client request and written in a portion of the header, a
portion of the body, or a portion of the payload of the cache
request. The client IP address may be stored in or written
into a TCP header. In some embodiments, the client IP
address is stored or written into a header of an application
layer protocol. For example, the cache request may be
modified to include the client IP address in an HTTP header.
In some embodiments, the client IP address is included in an
X-forward header or X-real-ip header of an HTTP request.

The client IP address may be entered into the cache
request or the client request in the form of numbers, char-
acters, string of characters or any other format. The client IP
address may be included into a second request, such as a
cache request, which may comprise the client request. In
some embodiments, cache redirector 600 inserts or writes
the IP address from the source of the client request into a
header of the cache request which comprises or envelops the
client request. The cache redirector 600 may forward the
cache request to the cache server 620.

At step 620, the intermediary 200 receives from the cache
server 620 a returned or a missed cache request. The
intermediary device may determine the request is from the
cache server based on the port that the request is received.
For example, a port number or range of numbers may be
designed as a cache proxy port. In other embodiments, the
intermediary device may determine the request is from the
cache based on any tuple information about the connection.
The returned or the missed cache request may be received by
the intermediary 200 via a third transport layer connection
between the cache server 620 and the intermediary 200. The

US 9,461,996 B2

61

cache request may comprise the client request. In some
embodiments, the cache request is a client request modified
to include the client IP address in a header of the client
request. The returned or missed cache request may be the
client request modified by the cache server 620. The modi-
fied client request may be modified by the cache server 620
to include an IP address of the intermediary 200 as the
source [P address. The modified client request may further
comprise the client IP address written in the header of the
request, or the body of the request. In some embodiments,
the returned or missed cache request is the cache request
from the step 615 which has been modified by the cache
server 620 to include the IP address of the intermediary 200
as the source IP address. The cache request may further
comprise the client IP address stored in the header of the
cache server modified cache request. The client request may
be returned from the cache server 620 to the intermediary
200 whenever the cache server 620 upon receiving the
request for content requested by the client request is not able
to provide the content requested. The returned cache request
may be returned to the intermediary 200 in response to a
cache miss by the cache server 620. The cache request may
be not implemented or may be missed due to any number of
reasons. In some embodiments, the cache is missed because
the content requested by the client request is not cached by
the cache server 620. In some embodiments, the cache is
missed because the cache server 620 determines that the
content requested is expired, outdated or invalid. In some
embodiments, the cache is missed because the content is
damaged or corrupted. In further embodiments, the cache is
missed because the cache server 620 is incapable of servic-
ing the request. The cache server may maintain the client IP
address in the same header as provided by the intermediary.
In other embodiments, the cache server may write or store
the client IP address in a different header.

At step 625, the intermediary 200 obtains the client IP
address stored in the cache request received from the cache
server 620. In some embodiments, a policy 610 initiates an
action by the cache redirector to obtain the client IP address
from the received cache request in response to a policy 610.
A rule of the policy, such as an expression, may be evaluated
in order to identify, parser or extract the client IP address
from the request received from the cache.

The policy 610 may further specify to replace the source
1P address of the cache request with the client IP address to
form a request to send to the destination server. The policy
610 may initiate or specify other functions to modify the
cache request to resemble the client request which was
originally received from the client 102. The client IP address
may be obtained in response to the policy 610 in order to
restore the client IP address the source IP address and
thereby maintain the source IP address as originally received
at step 605. In some embodiments, upon obtaining the client
IP address stored in the header of the cache request, the
cache redirector 600 modifies the cache request to include
the source IP address from the header of the cache request
into the source of the cache server 620 modified cache
request. Similarly, the cache redirector 600 may modify the
cache request received from the cache server 620 to include
the destination IP address stored in the header of the client
request into the destination of the client request or the cache
request. Intermediary 200 may modify the cache request to
resemble the client request as was received by the interme-
diary at step 605.

At step 630, the intermediary 200 transmits to the desti-
nation server 106 the client request that includes the IP
address of the client 102 as the source IP address of the client

10

15

20

25

30

35

40

45

50

55

60

65

62

request. The client request may include the cache request
modified to include the client IP address stored in the header
or the body of the cache request as the source IP address of
the client request. The client request may include the cache
request modified to include the destination IP address which
was stored or written in the header of the body of the request
as the destination IP address of the request. Intermediary 200
may transmit the client request to the destination server 106
upon ensuring that the source IP address and/or the desti-
nation [P address are modified to reflect their original
settings. The client request may be transmitted to the des-
tination server 106 via a transport layer connection between
to the intermediary and server, referred to as a fourth
transport layer connection. The client IP address may be
stored in or written into a TCP header of the request sent to
the destination. In some embodiments, the client IP address
is stored or written into a header of an application layer
protocol of the request sent to the destination. For example,
the cache request may be modified to include the client IP
address in an HTTP header. In some embodiments, the client
IP address is included in an X-forward header or X-real-ip
header of an HTTP request sent to destination.

In one embodiment, an intermediary network device
receives from a client of a plurality of clients a client request.
The intermediary device may receive the client request via
a transport layer connection between the client and the
intermediary network device. The client request may include
a network packet that comprises an information identifying
a particular content, such as a URL, an object, a file name
or file path, a document name or any other type and form of
content identifying information. The intermediary device
may monitor or review or parse the requests, such as the
client request. Upon review, monitoring or parsing of the
client request, the intermediary device may determine that
the client request is requesting a content which may be
stored on a cache server. The cache redirector may comprise
configurations and/or policies to modify the client request to
include the source IP address of the client request into the
header of the client request. The cache request may, in
response to the determination that the client request is for the
content that may be cached, forward the modified client
request to the cache server.

The cache server may return the client request to the
intermediary network device upon determining that the
cache server is not able to provide the content requested by
the client request. In some embodiments, the cache server
may modify, change or replace the source IP address of the
client request. Therefore, the client request received by the
intermediary device from the cache server may include a
source IP address which was not the same source IP address
that was received by the intermediary from the client.
However, since the original source IP address has been
stored in the header of the client request by the cache
redirector, the original source IP address may still be pre-
served despite being modified by the cache server.

G. Transparent End to End Cache Redirection

Referring now to FIG. 7A, an embodiment of a system for
maintaining a transparent end to end cache redirection via an
intermediary device is illustrated. In some embodiments,
FIG. 7A relates to system for maintaining an internet pro-
tocol address of a destination server while performing cache
redirection by an intermediary network device. In brief
overview, FIG. 7A illustrates an intermediary device 200
deployed between a client 102 and a server 106. Client 102
is identified by a client IP address 705A. Similarly, server
106 is identified by a server IP address 705B. The interme-
diary device 200 comprises a cache redirector 600, an

US 9,461,996 B2

63

intermediary IP address 705C, an intermediary Media
Access Control (MAC) address 710C and an intermediary
virtual local area network (VLLAN) address 715C. Interme-
diary 200 is in communication with a cache server 620 that
includes a cache IP address 705D, a cache MAC address
710D and a cache VLAN address 715D. FIG. 7A further
depicts request 700 being transmitted from client 102 to
intermediary 200, and then forwarded from intermediary
200 to cache server 620, from cache server 620 back to
intermediary 200 and then from intermediary 200 to server
106.

In further overview, the intermediary may establish a
transport layer connection with the client, referred to for
convenience as a first transport layer connection. The inter-
mediary may establish another transport layer connection
with the cache server, referred to for convenience as a
second transport layer connection. The cache server may
establish a transport layer connection with the intermediary,
referred to for convenience as a third transport layer con-
nection. The intermediary may establish a transport layer
connection with the server, referred to for convenience as a
fourth transport layer connection

Arrow 1 of the FIG. 7A refers to transmission of a client
request 700 from client 102 to intermediary 200. Request
700 comprises client 102 IP address 705A as the source IP
address and server 106 IP address 705B as the destination IP
address. Arrow 2 refers to transmission of the request 700 by
intermediary 200 to cache server 620. At arrow 2, in addition
to source IP address 705A and 705B, request 700 also
includes cache server 620 MAC address 710D and cache
server 620 VLAN address 715D. Arrow 3 refers to the
transmission of request 700 from cache server 620 to
intermediary 200. At arrow 3, request 700 is modified to
include intermediary 200 MAC address 710C and interme-
diary 200 VL AN address 715C, while still retaining source
IP address 705A and destination IP address 705B. Arrow 4
refers to transmission of the client request 700 from inter-
mediary 200 to server 106. At arrow 4, request 700 still
maintains client 102 IP address 705A as the source IP
address and server 106 IP address 705B as the destination IP
address. In some aspects, FIG. 7A refers to a system for
transparent handling of a client request via an intermediary
device and a cache server. In some embodiments, the
embodiment presented represents a system that maintains
original source and destination IP addresses of a client
request throughout the journey of the client request from
client 102 to intermediary 200, from intermediary 200 to
cache server 620, from cache server 620 back to interme-
diary 200 and then from intermediary 200 to the destination
server 106.

Addresses, such as IP addresses 705, MAC addresses 710
and VLAN addresses 715 may include any type and form of
unique identifier identifying a network device. Addresses,
such as IP addresses 705, MAC addresses 710 and VLAN
addresses 715 may include any numerical identification,
logical address or a character identification of any particular
device, node or a network component. Addresses may
include numbers, letters and characters for identifying a
network device in a network environment. An IP address 705
may include any label, such as a numerical label assigned to
a network device for communicating via the Internet Pro-
tocol. A MAC address 710 may comprise an identifier to be
used for communication using Media Access Control pro-
tocol sub-layer. In some embodiments, MAC address 710
includes an identifier used at a layer 2, or a data link layer,
of the Open System Interconnection (OSI) reference model.
A VLAN address 715 may include any type and form of an

10

15

20

25

30

35

40

45

50

55

60

65

64

identifier for a local area network or a virtual local area
network. Any of the addresses may use or include any
functionality or feature of any addressing mechanism or
system used for network communication. Each network
device, such as client 102, server 106, intermediary 200 or
cache server 620, may be assigned a unique IP address.
Similarly, each network device may be assigned a unique
MAC address and/or a VLAN address.

Request 700 may include any type and form of commu-
nication transmitted between two network devices. Request
700 may include any unit of data, or a packet carried by a
network 104. In some embodiments, request 700 includes a
network packet. Request 700 may comprise any number or
format of bytes, characters or bits. Request 700 may com-
prise control information, such as a header. In some embodi-
ments, request 700 comprises a payload. Request 700 may
include any type and form of information or content, such as
bits, bytes, text, characters, audio and video content or
information, HTTP and HTML content or information,
objects, URLs, links, web pages, instructions, commands,
drawings, graphics or any other type and form of informa-
tion transmitted via a network packet. In some embodi-
ments, request 700 is a client request transmitted from client
102 to request access to content on a server 106. In certain
embodiments, request 700 includes a request for a particular
content, such as a web page, a document, a file, a service or
a resource provided by server 106. Request 700 may com-
prise any combination of addresses or identifiers, such as: a
source IP address, a destination IP address, a source MAC
address, a destination MAC address, one or more port
identifiers, a source VLAN address and a destination VLAN
address. In some embodiments, request 700 may further
include any other type and form of information which may
be used for network communication or may be stored in a
header of the request 700.

In addition to aforementioned embodiments, cache redi-
rector 600 may further include a functionality or a configu-
ration for using OSI network Layer 2 properties, also
referred to as the data link layer properties, for uniquely
identifying a connection. In some embodiments, cache redi-
rector 600 may include configuration to identify a connec-
tion between intermediary 200 and cache server 620 using a
MAC address or a VLAN address. In some embodiments,
cache redirector 600 may be configured to support transpar-
ent cache redirection by identifying connections using a
MAC address or a VLAN address. Cache redirector may
include instructions or configurations that identify policy
and rules/actions of the policy, such as:

enable ns mode USIP

add service sve__cache__1 ipl http portl -cacheType TRANSPARENT
add Ib vserver Ib__cache_1 -m MAC

bind Ib vserver Ib__cache 1 svc_ cache_ 1

add cr vserver crl * 80 -type TRANSPARENT -cacheVserver
Ib_cache__1 -L2CONN ON

bind cr vserver crl -policyName bypass-non-get

bind cr vserver crl -policyName bypass-dynamic-url-extraORIGIN

For example, these configurations or instructions may
enable client request 700 to retain the original client IP
address even as client request 700 is forwarded from inter-
mediary 200 to cache server 620, and back from cache
server 620 to intermediary 200. By including parameter
setting L2CONN ON, the intermediary 200 may be config-
ured to look up or identify the source of the request 700
received from cache server 620 using layer 2 properties, also
referred to as data link layer properties, such as the MAC

US 9,461,996 B2

65

address and the VLLAN address. Intermediary 200 may use
layer 2 properties to recognize or identify request 700 or the
connection via which the request 700 is received. In some
embodiments, intermediary 200 uses other layer 2 properties
or information for similar purposes, such as the port iden-
tifier information, logical ethernet links or channels, such as
the etherchannel by Cisco Systems. Cache redirector 600
may use any layer 2 properties or information to identify any
of the connections between intermediary 200 and cache
server 620, intermediary 200 and client 102 and intermedi-
ary 200 and server 106. Similarly, cache redirector may use
layer 2 properties, also referred to as the data link layer
properties, or information to identify any communications
transmitted via any of the connections, such as the request
700 or a response to request 700.

Referring now to FIG. 7B, an embodiment of steps of a
method for transparent cache redirection by an intermediary
device while maintaining a source IP address and a desti-
nation IP address the cache redirected client request is
illustrated. At step 705, intermediary device 200 receives a
client request 700 identifying a client IP address 705A as a
source IP address and a server IP address 705B as a
destination IP address of the client request. At step 710,
intermediary device 200 determines that client request 700
is for content that may be cached. At step 715, intermediary
200 transmits client request 700 to cache server 620, the
client request comprising a destination MAC address
changed to identify a MAC address of the cache server,
while maintaining 705A as the source IP address and 705B
as the destination IP address. At step 720, intermediary 200
receives from cache server 620 a returned client request 700
still comprising 705A as the source IP address and 705B as
the destination IP address. At step 725, intermediary 200
determines that the returned client request 700 is from cache
server based on a data link layer property of a connection
between cache server 620 and intermediary 200. At step 730,
intermediary 200 transmits to server 106 identified by server
1P address 705B the client request 700 identifying the client
IP address 705A as the source IP address and the server IP
address 705B as the destination IP address.

At step 705, intermediary network device 200 receives a
request 700 identifying client IP address 705A as a source [P
address of the request and server IP address 705B as a
destination IP address of the request. Request 700 may be
received via a transport layer connection, such as a transport
layer connection established between intermediary 200 and
client 102. In some embodiments, the intermediary receives
request 700 via a TCP connection. The intermediary device
200 may receive any number of requests 700 from any
number of clients 102 or other intermediaries 200. In some
embodiments, intermediary 200 receives request 700 via an
established session to a client 102 or via a session estab-
lished between a client 102 and a server 106 via interme-
diary 200. Request 700 may be for a particular type and form
of content or service provided by server 106. Request 700
may include a URL for a particular page, which may further
identify one or more objects to be received by the requesting
client. In some embodiments, the content requested by the
client request includes any type and form of web content,
such as the HTTP, HTML, XML, audio, video, graphics,
presentation, data stream or any type and form of service or
application content.

At step 710, intermediary device 200 determines that
request 700 is for content that may be cached. In some
embodiments, intermediary 200 parses request 700. The
intermediary 200 may identify, via parsing, that a portion of
request 700 references or requests a webpage, a file, a

15

25

30

40

45

66

picture, a video or audio stream, a graphical feature, a
portion of text or a document. Intermediary 200 may deter-
mine that a portion of request 700, such as a URL, a portion
of the text, a document or an object identifies content that
may be cached. Intermediary 200 may determine that any
portion of request 700 identifies components which may be
stored or cached at a cache server 620. The intermediary 200
may make a determination using a compression history or
history of the network traffic traversed. In some embodi-
ments, intermediary 200 maintains a communication with
the cache server 620 and receives information from the
cache server 620 to be used to identify the content that may
be cached.

At step 715, intermediary 200 transmits to cache server
620 request 700 that includes a destination MAC address
identifying a MAC address of the cache server, while
maintaining client IP address 705A as the source IP address
and server IP address 705B as the destination IP address.
Intermediary 200 may transmit to cache server 620 the
request 700 via a connection established between interme-
diary 200 and cache server 620 for transmitting communi-
cation from intermediary 200 to the cache server 620. In
some embodiments, intermediary 200 transmits to cache
server 620 request 700 that includes a destination VLAN
address identitfying a VLLAN address of the cache server. In
some embodiments, intermediary 200 transmits to cache
server 620 request 700 that includes any OSI network Layer
2 property. In further embodiments, intermediary 200 trans-
mits to cache server 620 request 700 that includes a port
identifier. In still further embodiments, intermediary 200
transmits to cache server 620 request 700 that includes the
client IP address 705 A as the source IP address of the request
and the server IP address 705B as the destination IP address
of the request. In some embodiments, request 700 is modi-
fied by intermediary 200 or cache redirector 600 to include
MAC address of the cache server. In certain embodiments,
request 700 is modified by intermediary 200 or cache
redirector 600 to include VLAN address of the cache server
620. In specific embodiments, request 700 is modified by
intermediary 200 or cache redirector 600 to include any OSI
network Layer 2 property of the cache server 620. In further
embodiments, intermediary 200 or cache redirector 600
modifies a network Layer 2 property to identify cache server
620 based on a policy, such as policy 610 or a configuration,
such as configuration 605.

At step 720, intermediary 200 receives from cache server
620 the returned request 700 that still includes client IP
address 705A as the source IP address and server IP address
705B as the destination IP address. The returned or bounced
request 700 may be received by the intermediary 200 via a
third transport layer connection between the cache server
620 and the intermediary 200. In some embodiments,
request 700 returned by cache server 620 is request 700
modified to include the MAC address 710C of intermediary
200 as the destination MAC address. Returned request 700
may also be modified to include MAC address 710D of
cache server 620 as the source MAC address. Returned
request 700 may be modified to include VLAN address
715C of intermediary 200 as the destination VLAN address.
In some embodiments, the returned request 700 includes
VLAN address 715D of cache server 620 as the source
VLAN address. In certain embodiments, returned request
700 identifies a port of intermediary 200 as the destination
port an a port of cache server 620 as the source port. In some
embodiments, returned cache server 700 includes any net-
work Layer 2 property of intermediary 200 as the destination
property and any network Layer 2 property of cache server

US 9,461,996 B2

67

620 as the source property. Returned request 700 may
include client IP address 705A as the source IP address and
server IP address 705B as the destination IP address.
Returned request 700 may be returned to the intermediary
200 in response to a cache miss by cache server 620.
Returned request 700 may include a request for content
which may have been missed or not satisfied by cache server
620 due to any number of reasons. In some embodiments,
returned request 700 was for content which cache server 620
could not produce, which was not stored on cache server 620
or which was corrupted, expired, or invalid. Cache server
620 may return request 700 received from intermediary 200
via a connection established between the cache server 620
and the intermediary 200 for transmitting communication by
the cache server 620 to the intermediary 200. Cache server
620 may use any of the MAC address of the cache server,
VLAN address of the cache server, port identifier of the
cache server or any other network Layer 2 property to
provide information for intermediary 200 to identify the
connection between intermediary 200. Cache server 620
may also use any network Layer 2 property of the cache
server 620 or intermediary 200 to provide information for
intermediary 200 to determine that the returned request 700
was received from the cache server 620.

At step 725, intermediary 200 determines that the
returned client request is from cache server 620 based on a
data link layer property of a connection between cache
server 620 and intermediary 200. In some embodiments,
intermediary 200 parses the returned request 700 to identify
the source of the returned request 700. In some embodi-
ments, intermediary 200 identifies that the returned request
700 is from cache server 620 by identifying cache MAC
address 710D of the cache server 620 as the source MAC
address of the request 700. In certain embodiments, inter-
mediary 200 identifies that the request 700 is from cache
server 620 by identifying cache VLAN address 715D of the
cache server 620 as the source VL AN address of the request
700. In some embodiments, intermediary 200 identifies that
the returned request 700 is from cache server 620 by
identifying any data link layer or network layer 2 property
of the request 700 as the data link layer 2 property of the
cache server 620. In further embodiments, intermediary 200
determines that a port of the returned request 700 identifies
a port of cache server 620. Intermediary 200 may associate
any data link layer information of the cache server 620 with
the connection between the cache server 620 and interme-
diary 200. Intermediary 200 may use any data link layer
information of the cache server 620 to identify the returned
request 700 as the request returned from the cache server
620. Intermediary 200 may determine that the returned
request 700 comprises client IP address 705A as the source
IP address and server IP address 705B as the destination IP
address of the returned request 700.

At step 730, intermediary 200 transmits to server 106
request 700 received from cache server 620. Request 700
transmitted by intermediary 200 to server 106 may identify
the client IP address 705A as the source IP address and the
server IP address 705B as the destination IP address. In some
embodiments, request 700 transmitted to server 106 com-
prises information identifying content request 700 is
requesting. In certain embodiments, request 700 identifies
the content requested by client 102 via a URL, object, web
page, link, document name, file name, resource name or a
service name provided by server 106. In some embodiments,
intermediary 200 transmits request 700 via a connection
established between intermediary 200 and server 106. Inter-
mediary 200 may transmit to the server 106 the returned

10

15

20

25

30

35

40

45

50

55

60

65

68

request 700 received from cache server 620 in response to
the cache server 620 not being able to provide the content
requested by the request 700. Request 700 transmitted by
intermediary 200 to server 106 may include body or payload
that is same as the body or content of the request 700
received by intermediary 200 at step 705.

H. Systems and Methods for Single Sign On (SSO) to
Disparately Hosted Application

Embodiments of the systems and methods of the present
solution are directed to providing a single authentication
domain across disparately hosted applications, such as Soft-
ware As A Service, Platform As A Service (PaaS) hosted
applications, Infrastructure As A Service (IaaS) applications,
cloud hosted applications and enterprise hosted applications.
Any embodiments of the application delivery controller
(ADCQ), e.g., appliance 200 or packet engine, may provide an
interface for a remote user to use a single sign on to the
system to gain access to any one or more of the plurality of
differently hosted applications. With the same sign on, a user
may access an application hosted outside the enterprise the
same way the user may gain access to a data center or
enterprise hosted application. Transparent and seamless to
the user, the same sign on to the ADC provides access to the
disparately hosted systems which may have different pass-
words and/or authentication systems.

Referring to FIG. 8A, an embodiment of a cloud access
solution to provide a single authentication domain across a
plurality of disparately hosted applications is depicted. In
brief overview, a user may access one or more of a plurality
of disparately hosted applications via a web portal or inter-
face provide by a cloud access system. The cloud access
system may include, interface, communicate or integrate
with any type and form of authentication, authorization
and/or auditing (AAA) system to provide AAA services for
the user’s access. The cloud access system may include,
interface, communicate or integrate via an API to any
applications of the user running on a client that requests
access to the back-end applications. The cloud access system
may interface, communicate or integrate to any one or more
type of applications, including but not limited to SaaS
applications, cloud hosted application and/or enterprise web
based applications.

The plurality of disparately hosted applications may
include any type and form of application that is executed,
accessed and controlled or managed separately from any
other application. A disparately hosted application may be
any application hosted on a system, server or service exter-
nal to the enterprise or the data center of the enterprise. A
disparately hosted application may be any application hosted
on a system, server or service separately and/or controlled
and managed externally to the enterprise or the data center
of'the enterprise, such as via a second or different enterprise
or company. A disparately hosted application may be any
application hosted on a system, server or service that has
different authentication credentials for a user from another
application accessed by the user. A disparately hosted appli-
cation may be any application hosted on a system, server or
service that has different authentication systems and/or
access for a user from another application accessed by the
user.

The plurality of hosted applications accessed via the cloud
access system may include any combination of heteroge-
neous or homogeneous applications, including but not lim-
ited, to any one or more SaaS applications, Platform as a
Service (PaaS) applications, Infrastructure as a Service
(IaaS) applications, and/or any applications hosted,

US 9,461,996 B2

69

executed, services or accessed via any type and form of
cloud hosting platform or service, such as a private cloud or
public cloud service.

The cloud access system creates and provides a single
authentication domain and access system to the plurality of
disparately hosted applications. A user via the web interface
may access the cloud access system using one set of authen-
tication credentials and gain access to each of the plurality
of applications, which may each require or use a different set
of authentication credentials for the user. The cloud access
system manages the different set of authentication creden-
tials and authenticating the user to each of the plurality of
hosted applications. For example, a user gains access to the
system by authentication to the cloud access system. In turn,
the cloud access system may authenticate the user to one or
more SaaS applications and/or one or more Cloud hosted
applications.

The cloud access system enables and provides for a
plurality of advantageous and beneficial user case scenarios.
Referring now to FIG. 8B, an example embodiment of such
use case scenarios are highlighted. Embodiments of the
cloud access system of the present solution may provide:

(1) seamless user access via a web interface to any
combination of SaaS, cloud hosted and enterprise applica-
tions;

(ii) offloading of Single Sign On (SSO) management to an
intermediary device, such as appliance 200', for any com-
bination SaaS, cloud hosted and enterprise applications;

(iii) promotes and supports the movement of workloads
and applications to the SaaS/PaaS/laaS model and/or cloud
hosted services.

FIGS. 8C through 8E further illustrate embodiments of these
use case scenarios.

Referring now to FIG. 8C, an embodiment of a seamless
access across the plurality of disparately hosted applications
is depicted. An application delivery controller such as any
embodiment of appliance 200 may provide seamless and
transparent access to the various hosted applications. The
ADC 200 may include integrate or communicate with any
type and form of cloud access system, device or software,
such as any embodiments of Apere’s Access Control and
SaaS SSO software and/or devices. The ADC may use any
embodiments of the cache redirection functionality and
operations described in conjunctions with FIGS. 6A-7B to
interface or communicate with the cloud access system,
device or software. The ADC may be configured, con-
structed and designed to redirect, manage and control traffic
to the cloud access system, device or software and to receive
responses, instructions, configuration or commands from the
cloud access system, device or software to provide seamless
and transparent access to the user to any of the SaaS and/or
cloud hosted systems in conjunction with any enterprise
applications.

Referring now to FIG. 8D, an embodiment of offloading
SSO policy management to an ADC for SaaS and/or cloud
hosted applications s depicted. An application delivery con-
troller such as any embodiment of appliance 200 may
provide centralized SSO policy management for any appli-
cation, any user at any location. An application delivery
controller such as any embodiment of appliance 200 may
provide centralized SSO policy management for any com-
bination of the plurality of disparately hosted applications.
In overview, the ADC 200 may include, interface with any
one or more cloud access and security systems. The ADC
200 may also include, interface with any one or more
enterprise AAA system, such as any embodiments of Site-
Minder provided by CA of Islandia, N.Y. As such, the ADC
may provide a centralized, single point of access and inter-
face to a plurality of different AAA/access systems corre-
sponding either to a SaaS/Cloud hosted application and/r to

5

10

15

20

25

30

35

40

45

50

55

60

65

70

an enterprise application. Instead of having SSO policies
being managed at each of these different AAA/access sys-
tems, management of these SSO policies may be offloaded
to a centralized point via a set of one or more ADC device(s).

Referring now to FIG. 8E, an embodiment of a use case
of movement of workloads to the cloud is depicted. With
seamless, transparent and centralized SSO and management
thereof provided by embodiments of the ADC of the present
solution, the enterprise may move one or more applications
to be hosted by a cloud service provider. With the ADC
providing the SSO management and access to the dispa-
rately hosted applications, the enterprise may migrate, trans-
form, move, convert or change any applications from enter-
prise hosted model to a SaaS/PaaS/IaaS hosted model or to
any private or public cloud model. Embodiments of the ADC
of the present solution provides for changes in back-end
deployment of such applications to different hosted systems
and models, different authentication credentials and authen-
tication systems while maintaining the seamless and trans-
parent access to the user to such applications and/or main-
taining a single sign on process.

Referring now to FIG. 8F, an embodiment of another use
case of movement of workloads to the cloud is depicted. In
this embodiment, a cloud bridge system, device, software or
service may be used to bridge the migration of an enterprise
application hosted in the data center to an application hosted
on a cloud platform, such as an laaS cloud. In some
embodiments, the ADC may include, integrate or commu-
nicate with a cloud bridge to provide seamless and trans-
parent migration of an application from the data center to a
cloud hosting provider. This may be performed while the
application is running and the ADC provides to the remote
user seamless, continuous and transparent access to the
application during and after migration of the application.

Referring now to FIG. 9A, an illustration of features of
embodiments of the cloud access solution is shown. The
integrated cloud access solution of embodiments of the ADC
provides transparent SSO access to any combination of
SaaS, enterprise and cloud locations from any location for
any user. Embodiments of the ADC provides, supports and
facilitates automatic recognition, authentication and autho-
rization for a plurality of SaaS and cloud applications.
Embodiments of the ADC integrated and provides a non-
disruptive solution to existing AAA solutions.

Referring now to FIG. 9B, an illustration of features of
embodiments of the cloud access solution is shown. The
integrated cloud access solution of embodiments of the ADC
provides user provisioning and password management. The
cloud access solution also includes Single Sign On control,
management, and automated login to any SaaS, Web or
XenApp or XenDestop Application. The cloud access solu-
tion may include one or more application connectors to any
predetermined SaaS, Enterprise, Cloud or any other type and
form of application.

Referring now to FIG. 9C, an illustration of features of
another embodiment of the cloud access solution is shown.
With the integration and combination of SSO, policy based
application access and user provisioning and password man-
agement, the cloud access solution provides the following
features:

(1) application specific interfaces for SSO

(i) automated authentication and login to each of the
applications

(iii1) centralized policy controlled user and applications
access.

Referring now to FIG. 10A, an example embodiment of a
deployment of the cloud access solution is depicted. In this
example embodiment, two ADCs or applications may be
deployed in the end to end solution. A first ADC or appliance
may be deployed in the DMZ zone to provide consolidated

US 9,461,996 B2

71

and centralized AAA access control to the network and
services of the data center. A second ADC or appliance may
be deployed for or with the data center to provide support
and rollout of new application in the data centers.

Referring now to FIG. 10B, an example embodiment of a
deployment of the cloud access solution for a multi-tenant
XenApp/XenDesktop is depicted. In this example embodi-
ment, one or more ADCs or appliances 200' may provide
local or global load balancing to a plurality of ADCs 200. In
some embodiments, the ADCS 200' may provide monitoring
and dynamic deployment of one or virtualized ADCs, which
may be deployed or hosted on a cloud platform. A set of one
or more ADCs 200 may be used for one tenant to provide a
cloud access solution that provides access to enterprise
XenApp and XenDesktop solutions of Citrix Systems, Inc.
while providing access also to any one or more SaaS
provided applications. The cloud access solution of this
deployment provides SSO service to multi-tenant ADC
configurations and enterprise and SaaS applications.

Referring now to FIG. 10C, an example embodiment of a
deployment of the cloud access solution for IaaS hosted
applications is depicted. In these embodiments, the enter-
prise may use a private or enterprise hosted AAA system
with a cloud bridge to access the ADC and ADC provided
cloud access solution to gain SSO access to one or more laaS
hosted applications.

Referring now to FIG. 10D, an example embodiment of a
deployment of the cloud access solution for SSO to Internal
or Enterprise applications is depicted. The ADC 200 may
communicate or interface with a plurality of cloud access
systems and an enterprise application server farm. While
providing SSO via any of the cloud access systems to any
cloud hosted application, the ADC uses SSO to also authen-
ticate and provide access to any applications in the appli-
cation farm.

Referring now to FIG. 11, an example embodiment of a
deployment of the cloud access solution for cloud bursting
is depicted. The ADC 200 may perform traffic management
and monitoring of any of the enterprise web applications and
the servers or resources supporting such applications. From
monitoring, the ADC may detect that operations or perfor-
mance of the enterprise applications may not be within a
desired threshold and responsive to such detection, the ADC
may perform cloud bursting to deploy the application on the
cloud and provide seamless and transparent access to the
user the application that now is bursted or hosted by a cloud
service provider.

In addition to transparency, seamlessness and consoli-
dated SSO, the ADC may provide acceleration of any of the
network traffic to the SaaS and cloud hosted applications.
Any combination of the disparately hosted applications may
be accelerated by the ADC.

1. Systems and Methods for Methods and Systems for
Generating and Delivering an Interactive Application Deliv-
ery Store

Referring now to FIG. 12A, together the servers 106
comprise a farm 38 or server farm, where each server 106
can include a network-side interface 1202 and a farm-side
interface 1204. The network-side interface 1202 can be in
communication with one or more clients 1102 or a network
104. The network 104 can be a WAN, LAN, or any other
embodiment of a network such those networks described
above.

Each server 106 has a farm-side interface 1204 connected
with one or more farm-side interface(s) 1204 of other
servers 106 in the farm 38. In one embodiment, each
farm-side interface 1204 is interconnected to other farm-side

10

15

20

25

30

35

40

45

50

55

60

72

interfaces 1204 such that the servers 106 within the farm 38
may communicate with one another. On each server 106, the
farm-side interface 1204 communicates with the network-
side interface 1202. The farm-side interfaces 1204 can also
communicate (designated by arrows 1220) with a persistent
store 1230 and, in some embodiments, with a dynamic store
1240. The combination of servers 106, the persistent store
1230, and the dynamic store 1240, when provided, are
collectively referred to as a farm 38. In some embodiments,
a server 106 communicates with the persistent store 1230
and other servers 106' communicate with the server 106 to
access information stored in the persistent store. The per-
sistent store 1230 may be physically implemented on a disk,
disk farm, a redundant array of independent disks (RAID),
writeable compact disc, or any other device that allows data
to be read and written and that maintains written data if
power is removed from the storage device. A single physical
device may provide storage for a plurality of persistent
stores, i.e., a single physical device may be used to provide
the persistent store 1230 for more than one farm 38. The
persistent store 1230 maintains static data associated with
each server 106 in farm 38 and global data used by all
servers 106 within the farm 38. In one embodiment, the
persistent store 1230 may maintain the server data in a
Lightweight Directory Access Protocol (LDAP) data model.
In other embodiments, the persistent store 1230 stores server
data in an ODBC-compliant database. For the purposes of
this description, the term “static data” refers to data that do
not change frequently, i.e., data that change only on an
hourly, daily, or weekly basis, or data that never change.
Each server uses a persistent storage subsystem to read data
from and write data to the persistent store 1230.

The data stored by the persistent store 2130 may be
replicated for reliability purposes physically or logically. For
example, physical redundancy may be provided using a set
of redundant, mirrored disks, each providing a copy of the
data. In other embodiments, the database itself may be
replicated using standard database techniques to provide
multiple copies of the database. In further embodiments,
both physical and logical replication may be used concur-
rently.

The dynamic store 1240 (i.e., the collection of all record
tables) can be embodied in various ways. In one embodi-
ment, the dynamic store 1240 is centralized; that is, all
runtime data are stored in the memory of one server 106 in
the farm 38. That server operates as a master network node
with which all other servers 106 in the farm 38 communicate
when seeking access to that runtime data. In another
embodiment, each server 106 in the farm 38 keeps a full
copy of the dynamic store 240. Here, each server 106
communicates with every other server 106 to keep its copy
of the dynamic store 1240 up to date.

In another embodiment, each server 106 maintains its
own runtime data and communicates with other servers 106
when seeking to obtain runtime data from them. Thus, for
example, a server 106 attempting to find an application
program requested by the client 102 may communicate
directly with every other server 106 in the farm 38 to find
one or more servers hosting the requested application.

For farms 38 having a large number of servers 106, the
network traffic produced by these embodiments can become
heavy. One embodiment alleviates heavy network traffic by
designating a subset of the servers 106 in a farm 38, typically
two or more, as “collector points.”Generally, a collector
point is a server that collects run-time data. Each collector
point stores runtime data collected from certain other servers
106 in the farm 38. Each server 106 in the farm 38 is capable

US 9,461,996 B2

73

of operating as, and consequently is capable of being des-
ignated as, a collector point. In one embodiment, each
collector point stores a copy of the entire dynamic store
1240. In another embodiment, each collector point stores a
portion of the dynamic store 1240, i.e., it maintains runtime
data of a particular data type. The type of data stored by a
server 106 may be predetermined according to one or more
criteria. For example, servers 106 may store different types
of data based on their boot order. In some embodiments, the
type of data stored by a server 106 may be configured by an
administrator using an administration tool (Not Shown.) In
these embodiments, the dynamic store 240 is distributed
amongst two or more servers 106 in the farm 38.

Servers 106 not designated as collector points know the
servers 106 in a farm 38 that are designated as collector
points. A server 180 not designated as a collector point may
communicate with a particular collector point when deliv-
ering and requesting runtime data. Consequently, collector
points lighten network traffic because each server 106 in the
farm 38 communicates with a single collector point server
106, rather than with every other server 106, when seeking
to access the runtime data.

Each server 106 can operate as a collector point for more
than one type of data. For example, server 106" can operate
as a collector point for licensing information and for loading
information. In these embodiments, each collector point may
amass a different type of run-time data. For example, to
illustrate this case, the server 106" can collect licensing
information, while the server 106" collects loading infor-
mation.

In some embodiments, each collector point stores data
that is shared between all servers 106 in a farm 38. In these
embodiments, each collector point of a particular type of
data exchanges the data collected by that collector point with
every other collector point for that type of data in the farm
38. Thus, upon completion of the exchange of such data,
each collector point 106" and 106 possesses the same data.
Also in these embodiments, each collector point 106 and
106" also keeps every other collector point abreast of any
updates to the runtime data.

Browsing enables a client 102 to view farms 38, servers
106, and applications in the farms 38 and to access available
information such as sessions throughout the farm 38. Each
server 106 includes an ICA browsing subsystem 260 to
provide the client 102 with browsing capability. After the
client 102 establishes a connection with the ICA browser
subsystem 1260 of any of the servers 106, that browser
subsystem supports a variety of client requests. Such client
requests include: (1) enumerating names of servers in the
farm, (2) enumerating names of applications published in
the farm, (3) resolving a server name and/or application
name to a server address that is useful the client 102. The
ICA browser subsystem 1260 also supports requests made
by clients 10 running a program neighborhood application
that provides the client 102, upon request, with a view of
those applications within the farm 38 for which the user is
authorized. The ICA browser subsystem 1260 forwards all
of the above-mentioned client requests to the appropriate
subsystem in the server 106.

In one embodiment, each server 106 in the farm 38 that
has a program neighborhood subsystem 1270 can provide
the user of a client 102 with a view of applications within the
farm 38. The program neighborhood subsystem 270 may
limit the view to those applications for which the user of the
client 102 has authorization to access. Typically, this pro-
gram neighborhood service presents the applications to the
user as a list or a group of icons. The functionality provided

10

15

20

25

30

35

40

45

50

55

60

65

74

by the program neighborhood subsystem 1270 can be avail-
able to two types of clients, (1) program neighborhood-
enabled clients that can access the functionality directly
from a client desktop, and (2) non-program neighborhood-
enabled clients (e.g., legacy clients) that can access the
functionality by running a program neighborhood-enabled
desktop on the server.

Communication between a program neighborhood-en-
abled client and the program neighborhood subsystem 1270
may occur over a dedicated virtual channel that is estab-
lished on top of an ICA virtual channel. In other embodi-
ments, the communication occurs using an XML service. In
one of these embodiments, the program neighborhood-
enabled client communicates with an XML subsystem, such
as the XML service 1516 described in connection with FIG.
6 below, providing program neighborhood functionality on
a server 106.

In one embodiment, the program neighborhood-enabled
client does not have a connection with the server with a
program neighborhood subsystem 1270. For this embodi-
ment, the client 102 sends a request to the ICA browser
subsystem 1260 to establish an ICA connection to the server
106 in order to identify applications available to the client
102. The client 102 then runs a client-side dialog that
acquires the credentials of a user. The credentials are
received by the ICA browser subsystem 260 and sent to the
program neighborhood subsystem 1270. In one embodi-
ment, the program neighborhood subsystem 1270 sends the
credentials to a user management subsystem for authentica-
tion. The user management subsystem may return a set of
distinguished names representing the list of accounts to
which the user belongs. Upon authentication, the program
neighborhood subsystem 1270 establishes the program
neighborhood virtual channel. This channel remains open
until the application filtering is complete. The program
neighborhood subsystem 1270 then requests the program
neighborhood information from the common application
subsystem 1524 associated with those accounts. The com-
mon application subsystem 1524 obtains the program neigh-
borhood information from the persistent store 1230. On
receiving the program neighborhood information, the pro-
gram neighborhood subsystem 270 formats and returns the
program neighborhood information to the client over the
program neighborhood virtual channel. Then the partial ICA
connection is closed. For another example in which the
program neighborhood-enabled client establishes a partial
ICA connection with a server, consider the user of the client
102 who selects a farm 38. The selection of the farm 38
sends a request from the client 102 to the ICA browser
subsystem 1260 to establish an ICA connection with one of
the servers 106 in the selected farm 38. The ICA browser
subsystem 2160 sends the request to the program neighbor-
hood subsystem 1270, which selects a server 106 in the farm
38. Address information associated with the server 106 is
identified and returned to the client 102 by way of the ICA
browser subsystem 1260. The client 102 can then subse-
quently connect to the server 106 corresponding to the
received address information.

In another embodiment, the program neighborhood-en-
abled client 102 establishes an ICA connection upon which
the program neighborhood-virtual channel is established and
remains open for as long as the ICA connection persists.
Over this program neighborhood virtual channel, the pro-
gram neighborhood subsystem 1270 pushes program neigh-
borhood information updates to the client 102. To obtain
updates, the program neighborhood subsystem 2170 sub-
scribes to events from the common application subsystem

US 9,461,996 B2

75
1524 to allow the program neighborhood subsystem 1270 to
detect changes to published applications.

Referring to FIG. 12B, a block diagram depicts another
embodiment of a system architecture for providing a plu-
rality of application programs available to the client via
publishing of GUIs in a web service directory. The system
includes the client 102, and a plurality of servers 106. A first
server 106 functions as a content server. A second server
106' provides web server functionality, and a third server
106" provides functionality for providing access to applica-
tion files and acts as an application server or a file server.
The client 102 can download content from the content server
106, the web server 106', and the application server 106"
over the network 104. In one embodiment, the client 102 can
download content (e.g., an application) from the application
server 106" over the client-application server communica-
tion channel 150. In one embodiment, the web browser on
the client 102 uses Secure Socket Layer (SSL) support for
communications to the content server 106 and/or the web
server 106'. SSL is a secure protocol developed by Netscape
Communication Corporation of Mountain View, Calif., and
is now a standard promulgated by the Internet Engineering
Task Force (IETF). The web browser can connect to the
content server 106 and/or the web server 106' using other
security protocols, such as, but not limited to, Secure Hyper-
text Transfer Protocol (SHTTP) developed by Terisa Sys-
tems of Los Altos, Calif., HTTP over SSL. (HTTPS), Private
Communication Technology (PCT) developed by Microsoft
Corporation of Redmond, Wash., and the Transport Level
Security (TLS) standard promulgated by the IETF. In other
embodiments, the web browser communicates with the
servers 106 using a communications protocol without
encryption, such as the HyperText Transfer Protocol
(HTTP).

The client 102 can additionally include an application
client 13 for establishing and exchanging communications
with the application server 106" over the client-application
server communication channel 150. In one embodiment, the
application client is a GUI application. In some embodi-
ments, the application client is an Independent Computing
Architecture (ICA) client, developed by Citrix Systems, Inc.
of Fort Lauderdale, Fla., and is also referred to below as ICA
client 13. Other embodiments of the application client
include a Remote Display Protocol (RDP) client, developed
by Microsoft Corporation of Redmond, Wash., an X-Win-
dows client 13, a client-side player, interpreter or simulator
capable of executing multimedia applications, email, Java,
or .NET code. Moreover, in one embodiment the output of
an application executing on the application server 106" can
be displayed at the client 102 via the ICA client. In some
embodiments, the application client is an application client
such as the application streaming client 1552, described in
greater detail in connection with FIG. 16.

The client 102 searches the web service directory 160 for
a web service. In one embodiment, the search is a manual
search. In some embodiments, the search is an automatic
search. The web service directory 1160 may also provide a
service based view, such as white and yellow pages, to
search for web services in the web service directory. In
another embodiment, the web service directory 1160 sup-
ports a hierarchical browsing based on a structured service
name and service kind for GUI applications. In one embodi-
ment, the web service directory 1160 executes on a server
independent of the content server 106, such as a directory
server. In other embodiments, the web service directory
1160 executes on multiple servers.

10

15

20

25

30

35

40

45

50

55

60

65

76

In some embodiments, the content server 106 enables the
client 102 to select web services based on additional analysis
or information by providing this information or analysis in
the web service directory 1160. Examples of service infor-
mation that the web service directory 1160 can list includes,
but is not limited to, the name of the business offering the
service, the service type, a textual description of the service,
one or more service access points (SAPs), the network type,
the path to use (e.g., TCP or HTTPS), and quality of service
(QoS) information. Moreover, service information can be
client device type or user (e.g., role) specific. Thus, service
selection can be based on one or more of the above attri-
butes.

In one embodiment, the service type denotes a program-
ming interface that the client 102 must use to access the web
service. For instance, the service type can state that the
service is encoded by an interface description language, such
as Web Services Description Language (WSDL). The ser-
vice access point, or SAP, is a unique address for an
application. The SAPs enable the computer system to sup-
port multiple applications at the client 102 and each server
106. For example, the application server 106" may support
an electronic mail (i.e., e-mail) application, a file transfer
application, and/or a GUI application. In one embodiment,
these applications would each have a SAP that is unique
within the application server 106". In one embodiment, the
SAP is a web or Internet address (e.g., Domain Name
System (DNS) name, IP/port, or Uniform Resource Locator
(URL)). Thus, in one embodiment the SAP identifies the
address of the web server 106' as part of the address for an
application stored on the web server 106'. In some embodi-
ments, the SAP identifies the address of a publishing server
plug-in 1165 as part of the address for an application stored
on the web server 106, as described below. In one embodi-
ment, the SAP is an “accessPoint” from the UDDI registry.

To prepare an item for publishing in the web service
directory 1160, the content server 106 includes a web
publishing tool 1170. In one embodiment, the web publish-
ing tool 1173 is a software module. In some embodiments,
the web publishing tool 1173 is another server that may be
externally located from or internally located in the content
server 106.

In one embodiment, the web server 106' delivers web
pages to the client 102. The web server 106' can be any
server 106 capable of providing web pages to the client 102.
In another embodiment, the web server 106' is an Enterprise
Information Portal (e.g., corporate Intranet or secured busi-
ness-to-business extranet). Enterprise portals are company
web sites that aggregate, personalize and serve applications,
data and content to users, while offering management tools
for organizing and using information more efficiently. In
some companies, portals have replaced traditional desktop
software with browser-based access to a virtual workplace.

The web server 106' can also include a publishing server
plug-in 1165 to enable the publishing of graphical user
interface (GUI) applications. More specifically, the publish-
ing server plug-in 1165 translates a new web service entry
URL into a GUI application service so that the GUI can be
accessed via the web service directory 1160. In one embodi-
ment, the publishing server plug-in 1165 is a Common
Gateway Interface (CGI) script, which is a program
designed to accept and return data that conforms to the CGI
specification. The program can be written in any program-
ming language, such as C, Perl, Java, or Visual Basic. In
another embodiment, the publishing server plug-in 1165 is a
Java Server Page (JSP). Using the publishing server plug-in
165 to facilitate the publishing of remote GUI applications,

US 9,461,996 B2

77

the client 102 can thereby access the web service, not
through a programming interface or a web page, but through
a full GUI interface, such as with Citrix’s ICA or Micro-
soft’s RDP.

The application server 106" hosts one or more applica-
tions that are available for the client 102. Examples of such
applications include word processing programs such as
MICROSOFT WORD and spreadsheet programs such as
MICROSOFT EXCEL, both manufactured by Microsoft
Corporation of Redmond, Wash., financial reporting pro-
grams, customer registration programs, programs providing
technical support information, customer database applica-
tions, or application set managers.

In some embodiments, one or more communication links
150 are established over different networks. For example,
the client-content server communication channel 150' can
belong to a first network (e.g., the World Wide Web) and the
client-web server communication channel 150" can belong
to a second network (e.g., a secured extranet or Virtual
Private Network (VPN)).

In one embodiment, the web publishing tool 1173 stores
information about an application that the web publishing
tool 1173 is currently publishing in the web service directory
160 in a persistent mass storage 1225. In one embodiment
the information is a URL for the dynamic publishing server
plug-in 1165. The persistent mass storage 1225 may be a
magnetic disk or magneto-optical drive. In one embodiment,
the persistent mass storage 1225 is a database server, which
stores data related to the published application in one or
more local service databases. The persistent mass storage
1225 may be a component internally located in or externally
located from any or all of the servers 106.

In other embodiments, the content server 106 or the web
server 106' communicate with a server 106 in the farm 38 to
retrieve the list of applications. In one of these embodi-
ments, the content server 106 or the web server 106' com-
municate with the farm 38 instead of with the persistent
mass storage 1225.

Referring to FIG. 13A and FIG. 13B, to ease the burden
on system administrators, system administrators may use the
access administration system 1226 or one of its constituent
systems to aggregate users and resources into groups that
share common characteristics, since as the number of net-
work resources and users of a computer system 1200
increases, it becomes increasingly time consuming to indi-
vidually assign access rights to each user. Referring to FIG.
14A, an illustrative set 1300 of network resources of the
computer system 1200 may be grouped into Workstations
1302 which includes TermA 1202, TermB 1204, and TermC
1206; CAD Terminals 304 which includes CAD A 1214,
CAD B, 1216, and CAD C 1218; and Administrative Assis-
tant Terminals AdminA 1208, AdminB 1210 and AdminC
1212. Referring to FIG. 12B, an illustrative set 1307 of
computer users may be grouped as follows: Tara 1314, Tom
1316, and Ted 1318 may be grouped as members of the
Information Technology (IT) Staff 1308; Ellie 1320, Erica
1322, and Edward 1324 may grouped as Engineers 1310,
and Alex 1326, Amy 1328, and Andrew 1330 may be
grouped as Administrative Assistants 3112.

In one embodiment, a system administrator may specify
groupings of users and/or resources using the access admin-
istration system 1226. In one embodiment, the access
administration system 1226 provides a graphical user inter-
face with which a system administrator may drag and drop,
or point-and-click to add users or resources to groups. In
another embodiment, the enrollment administration system
2128 also provides group-management functionality via a

10

15

20

25

30

35

40

45

50

55

60

65

78

similar interface. The groups created for the purposes of
specifying enrollment rules may be different from the groups
created for specifying other access rules.

After groups of users and resources are defined, rules may
be specified to limit the ability of a group of users 1308,
1310, or 3112 to both directly and/or remotely access and
use a group of network resources 1302, 1304, and 1306. For
example, since members 1314, 1316, and 1318 of the [T staff
1308 are responsible for maintaining the computers 1202,
1204, 1206, 1208, 1210, 1212, 1214, 1216, and 1218, a
system administrator would likely want to give the of IT
Staff 1308 access to all of the computers 1202, 1204, 1206,
1208, 1210, 1212, 1214, 1216, and 1218. In contrast, a
system administrator may want to limit Administrative
Assistants 1312 to only be able to access the Administrative
Assistant Terminals with lesser capabilities. Engineers 3110
may be granted access to Workstations 1302 and CAD
Terminals 3104, but not to the Administrative Assistant
Terminals 1306 used by Administrative Assistants 1312.

In one embodiment, a system administrator may restrict
the ability of a user to remotely access a networked resource
without specifying individual user/resource limitations. As
mentioned above, the computer system 2100 operates under
a presumption that a computer user should only be able to
remotely access a computer to which the user is capable of
achieving direct physical access. If a user does not have
physical access to a networked resource, that user should not
be able to circumvent physical security measures by access-
ing the networked resource remotely. Here, physical access
means access to an input device (such as a keyboard, mouse,
trackball, microphone, touchscreen, joystick, etc.) con-
nected to a console that is physically attached to the net-
worked resource. Connection may include wireless commu-
nication in the case where input devices communicate with
a resource using a short range wireless signal (e.g., a
wireless keyboard or mouse). In a simple example, Engi-
neers 1310, in general, have access to CAD Terminals 1304
but only in the buildings in which they work. Engineer Ellie
1220, working in the second building 1222, does not have
physical access to CAD C 1212, because it is located in the
first building 1220. Likewise, if Ellie keeps her Workstation
1302, TermA 1402, in a locked office for privacy or security
reasons, other users will not have physical access to that
workstation 1302.

According to an embodiment of the invention, to enforce
this extension of physical access limitations into the remote
access environment, the computer system 1200 includes the
enrollment functionality described above. Namely, a user
cannot gain remote access to a networked resource of the
computer system 1200 if the user has not first enrolled the
networked resource. In some embodiments, a user may only
enroll a networked resource if the user requests enrollment
using an input device (e.g., keyboard, mouse, microphone,
display, etc.) connected to a console that is physically
attached to the networked resource. As such, if a user cannot
physically access such an input device, the user will not be
able to enroll the network resource and will not be able to
access the networked resource remotely.

In one such embodiment, not all users who have direct
physical access to a computer may enroll the computer.
Enrollment rules specify which users or groups of users are
authorized to enroll which networked resources or groups of
networked resources. In some embodiments, the enrollment
rules are specified at a user/resource group level rather than
at an individual user/resource level, for purposes of effi-
ciency. The groups may be the same groups as used for
specifying other access rules or the groups may be different.

US 9,461,996 B2

79

Referring to FIG. 14A, a table 1400 depicts illustrative
enrollment rules, where rows represent groups of users
1308, 1310, and 1312, and columns represent groups of
networked resources 1302, 1304, and 1306. A system
administrator specifies enrollment rules, for example using
the enrollment administration system 1228. To do so, the
system administrator defines a plurality of groups of users
1308, 1310, and 1312 and also defines groups of networked
resources 1302, 1304, and 1306 as described above with
respect to FIGS. 13A and 12B. The system administrator
then specifies which groups of users may enroll which
groups of networked resources. For example, in the table
1400, a system administrator has specified that IT staff
members 1308 can enroll Workstations 1302, CAD Termi-
nals 3104, and Administrative Assistant Terminals 1306 as
indicated by the “X”’s at the intersections of the I'T Staft 1308
row and the columns for each of the groups of networked
resources. Similarly, Engineers 1310 can enroll Worksta-
tions 1302 and CAD Terminals 1304, and Administrative
Assistants 1312 can only enroll Administrative Assistant
Terminals 1306.

It should be understood that these rules may be specified
in a table form as just described, but also or instead through
use of commands, data lists, data files, XML tags or any
other suitable mechanism for rule specification.

Using the enrollment administration system 1228, system
administrators can readily alter enrollment rules once speci-
fied. For example, to reflect changes in staffing (e.g., the
firing, hiring or shifting of an employee) the system admin-
istrator may add or remove users to and from user groups.
The same may be done for networked resource groups.
Policy decisions affecting entire groups may be imple-
mented by changing the groups of networked resources that
a group of users is permitted to enroll. For example, if the
system administrator that specified the enrollment rules in
the table 1400 decided that Administrative Assistants 1312
should also be able to enroll all workstations, the rule for
Administrative Assistants 1312 may be altered accordingly.
In the case that a system administrator removes the ability of
one or more users, or groups of users to enroll one or more
network resources, the users affected will no longer be able
to enroll those networked resources. In some embodiments,
if the networked resources were already enrolled by the
affected users, the change in the enrollment rule may cause
the networked resources to be unenrolled.

Referring to FIG. 15, a flow chart of a method 5100 of
enrolling a networked resource (e.g., computers 1202, 1204,
1206, 1208, 1210, 1212, 1214, 1216, and 1218) begins with
specification of enrollment rules (step 1502), for example by
a system administrator as described above. When a user
requests to enroll a networked resource (step 1504), the
enrollment system 230 verifies the identity of the user (step
1506). Identity verification (step 1506) may be achieved
through any identity authentication means, including for
example, user-password or PIN authentication, biometric
identification, voice identification, etc.

The enrollment system 1230 and the enrollment admin-
istration system 2128 determine whether the user is permit-
ted by the enrollment rules to enroll the networked resource
that the user is requesting to enroll (step 1508). In the
illustrative embodiment, the enrollment system 1230 sends
an enrollment request to the enrollment administration sys-
tem 1228. The enrollment request includes the identification
of'the networked resource that the user is requesting to enroll
and the identification of the user. The enrollment adminis-
tration system 1228 then compares the networked resource/
user pairing with the enrollment rules to determine if the

25

30

40

45

55

80

user is a member of a group that has permission to enroll any
of the networked resources of the group to which the
networked resource in question belongs.

Single-use copies of the enrollment rules may be down-
loaded to the networked resource from the enrollment
administration system 1228 each time a user attempts to
enroll a networked resource, and in other implementations a
networked resource may maintain a persistent set of enroll-
ment rules that is updated by the enrollment administration
system 1228 when a system administrator alters the enroll-
ment rules. In either of these cases, the permission verifi-
cation (step 1508) is carried out on the networked resource.

If the user is permitted to enroll the networked resource
based on the enrollment rules, the location of the user is
determined (step 1510). In one embodiment, a locator sys-
tem determines the location of the user by retrieving the IP
address of the networked resource from which the enroll-
ment request was sent, typically included in the header of the
packets that made up the communication, and executing a
reverse Domain Name Server (DNS) look-up routine to
determine the source of the request. The enrollment admin-
istration system 1228 then determines whether the user
requested enrollment of the networked resource from a
console that is physically attached to networked resource the
user is requesting to enroll (step 1512) by comparing the
determined enrollment request source with the networked
resource that is identified in the enrollment request. In
another embodiment, the locator system transmits to, and
causes the execution of a Java® applet or ActiveX® control
on the requested resource to determine whether the user is
actually logged in to a console that is physically attached to
the resource. In a further embodiment, the source of the
request may be verified by transmitting to, and causing the
execution of a Java® applet or ActiveX® control on the
source of the request that forces the source to identity itself.
The enrollment administration system 1228 then compares
the forced identification with the network resource the user
requested to enroll. In one embodiment, the enrollment
administration system carries out a combination of two or
more of the above listed verification methods to ensure a
robust request source identification.

If it is determined that the user sent the enrollment request
from a console that is physically attached to the networked
resource that the user is requesting to enroll (step 1512), the
enrollment administration system 1228 enrolls the net-
worked resource for the user (step 1514) by updating an
enrollment database. (See FIG. 17 below). If the user is not
permitted to enroll the networked resource based on the
enrollment rules, or it is determined that the user is attempt-
ing to enroll the computer from a remote location, enroll-
ment is denied (step 1516). In an another embodiment, the
enrollment administration system 2128 determines the loca-
tion of the user and verifies that the user is requesting
enrollment of the networked resource from which the enroll-
ment request originated before determining whether the user
is permitted to enroll the networked resource according to
the enrollment rules. In a further embodiment, the enroll-
ment administration system 1228 enables a system admin-
istrator to specify enrollment rules that allow a group of
users to remotely enroll networked resources or to specify
groups of resources that may be enrolled remotely. For
example, in one embodiment, enrollment rules allow a user
to enroll a file server (or a portion of a file server) that is part
of a secure network from a console that is a part of that
secure network but that is not physically attached to the file
server.

US 9,461,996 B2

81

Referring to FIG. 16, the enrollment administration sys-
tem 1228 maintains the information about enrolled resources
and users. This storage may be implemented in many ways,
including in the form of data files in a database. As shown
in the illustrative depiction of the contents of an enrollment
database 1600, in the figure, the database 1600 stores
enrollment data for each individual user and each networked
resource. When a user successfully enrolls a networked
resource (step 1514), the enrollment is stored in the enroll-
ment database 1600. For example, according to the enroll-
ment database 1600, engineer Ellie 1320 has enrolled
TermA, CAD A and CAD B. The table is consulted when a
user attempts to remotely access a networked resource.

Referring to FIG. 17, a method 1700 of granting remote
access to a networked resource includes querying the enroll-
ment database for example, the enrollment database 1600.
When a user attempts to remotely access the first networked
resource 1100, the request for access is received by the
remote access system 1232 (step 1702). The remote access
system 1232 verifies the identification of the user (step
1703), also referred to as authentication. As described above
in relation to verifying an identity of a user in the enrollment
context, the remote access system 1232 may authenticate a
user using any suitable identity authentication means,
including user name-password/PIN pairs, certificates, bio-
metric data, one time keys, voice samples, etc. The remote
access system 1232 then determines whether the user has
previously enrolled the first networked resource (step 1706).
If the user has previously enrolled the first networked
resource, the remote access system 1232 grants access to the
first networked resource (step 1708), otherwise the remote
access system 232 denies remote access to the first net-
worked resource.

In some embodiments, a system administrator could set
additional remote access rules that limit which remote
devices users may use to remotely access networked
resources. For example, a system administrator may specify
a rule that only allows users or groups of users to remotely
access networked resources or a group of networked
resources from a networked resource directly connected to
the computing system 1200. Under such a rule, Tara 1314,
for example, who according to the enrollment database 1600
has enrolled AdminC 1218, could remotely access AdminC
1218 from AdminA 1214, but Ted 1318, who also has
enrolled AdminC 1218 could not remotely access AdminC
from remote device 1102.

Tlustrated in FIG. 18A is an embodiment of a system that
can provide users with an application store. Included within
the system is a client 102 that can communicate with a server
106 via a network 104. The client 102 can comprise an
installed application store 1752, an Anthem interface 1754,
and a communication client 1756. Each of the Anthem
interface 1754 and the communication client 1756 execute
on the client 102 and each of the Anthem interface 1754 and
the communication client 1756 communicate with each
other and with the installed application store 1752. Both the
Anthem interface 1754 and the communication client 1756
can communicate with components on the server 106 via the
network 104. The server 106 can comprise a server com-
munication client 1764 communicating with an Anthem
manager 1766 which further communicates with an appli-
cation database 1762, a privileges database 1758 and a client
accounts database 1760. In one embodiment, an application
generator 1768 executes within the Anthem manager 1766
and communicates directly with the applications database
1762. Further included on the server 106 is a provisional
user session storage 1770.

10

15

20

25

30

35

40

45

50

55

60

65

82

Further referring to FIG. 18A, and in more detail, in one
embodiment the client 102 can be any of the clients
described herein. Similarly, in some embodiments the server
106 can be any of the servers described herein. The client
102 can communicate with the server 106 via the network
and over a communication channel. In some embodiments,
the client 102 can communicate with the server 106 via the
ICA protocol. The network 104 can, in some embodiments,
comprise any of the networks described herein.

In one embodiment, included on the client 102 is an
installed application store 1752 that can in some embodi-
ments communicate with both the ICA client 1756 and the
Anthem interface 1754. In one embodiment, the installed
application store 1752 can include a listing or table of each
of the applications stored or installed on the client 102. This
listing can in some embodiments include a listing of only
those applications that were installed using Citrix. In other
embodiments, the listing can include a listing of all remotely
provided or streamed applications. In still other embodi-
ments, the listing can include all applications installed on the
client 102. The ICA client 1756, in one embodiment, can
retrieve an enumeration of all the applications installed or
stored on the client 102 and can send this enumeration to the
server 106 where it can be processed by the Anthem man-
ager 1766. In some embodiments, the Anthem interface
1754 can use an enumeration from the installed application
store 1752 to determine how to display to a user of the client
102 the listing of available applications. The installed appli-
cation store 1752 can in some embodiments also store
configuration information for each of the applications listed
or stored in the store 1752. For example, the installed
application store 1752 may store an entry indicating that an
instance of MICROSOFT WORD is installed on the client
102. This entry may further comprise configuration infor-
mation indicating whether a user should interact remotely
with the instance of MICROSOFT WORD or whether
MICROSOFT WORD application files will be streamed to
the client 102 when the user requests, via the client 102, to
execute MICROSOFT WORD. In one embodiment, the
installed application store 1752 may store application stubs
or skeletons associated with an application.

An Anthem interface 1754 can be included on the client
102. In one embodiment, the Anthem interface 7154 can
interact with the ICA client 1756 such that the Anthem
interface 1754 can receive information from the ICA client
1756 and can further transmit commands or information to
the ICA client 1756. The ICA client 1756 can in some
instances transmit graphical application data to the Anthem
interface 1754, while in other embodiments the ICA client
does not interact with the Anthem interface 1754. The
Anthem interface 1754, in some embodiments, can comprise
a web-based interface that displays a listing of applications
installed on a client 102, a listing of applications that are
available to a particular user, and a listing of applications
that are not installed on a client 102. A user of the client 102
can download applications onto the client 102 by selecting
an application within the Anthem interface 1754 and click-
ing an associated button labeled “Add.”

In one embodiment, the ICA client 1756 can communi-
cate with the ICA server client 1764 executing on the server
106. The ICA client 1756 can facilitate the transfer of
application graphical data and server commands from the
server 106 to the client 102, and can facilitate the transfer of
commands and information from the client 102 to the server
106. In one embodiment, the ICA client 1756 is a commu-
nication client, while in other embodiments the ICA client
1756 is a communication module. The ICA client 1756 can

US 9,461,996 B2

83

use the ICA protocol or any other presentation level protocol
to transmit graphical application output from one computing
machine to another.

The Anthem interface 1754 and the ICA client 1756 can
communicate with the server 106 via a network. In one
embodiment, each of the interface 1754 and the client 1756
can communicate with an ICA server client 764 executing
on the server 106. In one embodiment the ICA server client
1764 is a client, module or application executing on the
server 106 and facilitating the transfer of information from
one computing machine to another. The ICA server client
1764 can be referred to as a server-specific communication
module, a communication module or client, or a server
client. In some embodiments the ICA server client 1764 can
facilitate the transfer and receipt of application commands
and graphical application output using the ICA protocol, in
other embodiments the ICA server client 1764 can use
another presentation level protocol.

Also executing on the server 106 is an Anthem manager
1766 that can manage the generation of the Anthem interface
1754 and that in some embodiments, can generate the
Anthem interface 1754 and transmit the interface 1754 to the
client 102. The Anthem manager 766 can communicate with
the privileges database 1758 and the client accounts data-
base 1760. In one embodiment, the Anthem manager 1766
can query the privileges database 1758 with respect to a
particular user and request from the privileges database 1758
a listing of the application, configuration and access privi-
leges for a particular user. The Anthem manager 1766 can
use this information to determine which applications should
be listed within the Anthem interface 1754. In some embodi-
ments, the Anthem manager 1766 may place restrictions on
the applications listed in the Anthem interface 1754 based on
the privileges received from the privileges database 1758 for
a particular user. For example, user 1 may have full access
to all MICROSOFT OFFICE applications but has limited
access to MATLAB applications. The privileges database
1758 could, in this example, include an entry for user 1
indicating that the user may download and configure all
MICROSOFT OFFICE applications at-will, but that there
are certain restrictions on the user’s access to MATLAB
applications. In one embodiment, the entry in the privileges
database 1758 may indicate that the user must fill out a
workflow request and request access to MATLAB applica-
tions before the user is able to receive the MATLAB
application. In another embodiment, the privileges database
1758 may indicate that a MATLAB application would cost
the user a certain amount of money, points or employee
credits (e.g., MATLAB would cost the user $300 or 500
employee credits.) In still another embodiment, the privi-
leges database 1758 may indicate that the user may only
download a pared down version of MATLAB.

In some embodiments, the Anthem manager 1766 may
communication with a clients accounts database 1760 that
stores information about the users of a system. In one
embodiment, the client accounts database 1760 can include
information about the amount of money, employee credits or
points available to a particular user. This information can be
used by the Anthem manager 1766 to make access control
decisions. For example, in the above example the Anthem
manager 1766 could receive information from the privileges
database 1758, indicating that a user may purchase MAT-
LAB for $300 U.S. dollars. In response, the Anthem man-
ager 1766 may query the client accounts database 1760 to
obtain a listing of the amount of money that particular user
has available to purchase MATLAB and may either incor-

10

15

20

25

30

35

40

45

50

55

60

65

84

porate this determination into the Anthem interface 1754 or
may use the information to determine whether the user can
download MATLAB.

Executing within the Anthem manager 1766 can be an
application generator 1768 that can create application stubs
when the Anthem manager 1766 receives a request to
download to a client 102 a particular application. In one
embodiment, the Anthem manager 1766 receives a request
to download to the client 102 a first application and passes
that request to the application generator 1768. In response
the application generator 1768 queries the applications data-
base 1762 for application-specific information and generates
an application stub using information received from the
applications database 1762. The application-specific infor-
mation can include any of the following information: an icon
or graphical image associated with the requested applica-
tion; a path indicating where the application is located on a
remote computing machine or application server; a path
indicating a streaming application able to stream to the client
102 the application files associated with the requested appli-
cation; configuration information regarding whether the
application should be streamed or interacted with remotely;
configuration information regarding how the application
should be displayed within the client’s 102 desktop; con-
figuration information regarding what should be installed in
the client’s 102 registry or file directory; or any other
information pertinent to the installation of the application on
the client 102. Generating the stub application can in some
embodiments comprise the method described in FIG. 20.

In some embodiments the application generator 1768 can
execute on a client computing machine. In these embodi-
ments, the application generator 1768 can generate applica-
tion stubs on the client rather than on a remote server. In
other embodiments, the application generator 1768 can
execute partially on the client and partially on the server. In
still other embodiments, the application generator 1768 can
execute on a computing machine remote from both the client
and the server. The client 102 can talk to multiple servers,
therefore one or more application generators 1768 can
execute on any of the servers and provide applications or
application stubs to the client. Similarly, a user can access
one or more application stores. A user’s Anthem account can
include one or more additional Anthem accounts. Therefore
if a user has access to a first Anthem account, a second
Anthem account and a third Anthem account; the user’s first
Anthem account can include both the second and third
Anthem account.

While the above-mentioned and below-included descrip-
tions illustrate the Anthem interface and Anthem manager in
terms of a virtual communication channel, in some embodi-
ments the Anthem interface and Anthem manager can oper-
ate independent of a virtual communication channel such
that the interface and manager communicate directly with
each other over a network.

Also included on the server 106 can be a provisional user
session storage 1770 that can be used to store temporary user
session information. For example, the provisional user ses-
sion storage 1770 can be used to temporarily store a listing
of the applications stored locally on a client 102 and
associated with a particular user. This listing can be used by
the Anthem manager 1766 to determine which applications
have already been installed on a particular client 102 and for
a particular user. In some embodiments, the Anthem man-
ager 1766 can use the information stored in the provisional
user session storage 1770 to synchronize a user’s stored
applications from machine to machine.

US 9,461,996 B2

85

While applications can be installed through the Anthem
manager 1766 and Anthem system, in some embodiments an
application can be installed by executing or otherwise
launching a file attached to an email. In one embodiment, a
user accesses a file attached to an email. The file is associ-
ated with a program not currently installed in the user’s
system. The Anthem system (e.g., the Anthem interface and
manager), detects the un-known file-type and launches an
application associated with the attached file. In one embodi-
ment, the application is added to the user’s Anthem folder.
The application can be added as a matter of course, or
according to a policy system or set of user configurations. In
some embodiments, a determination is first made as to
whether the user may install the application, and when the
user has permission to install the application. In other
embodiments, the Anthem manager may temporarily install
the application in the user’s Anthem folder. Once the user
finishes accessing the attached file, the application is unin-
stalled from the user’s Anthem folder. In still other embodi-
ments,

Tlustrated in FIG. 18B is an embodiment of a system for
providing users with an interactive application store. In this
embodiment, two users are logged into the server 106 and
therefore the Anthem manager 1766 where each user is
logged onto the same client 102. In one embodiment, a first
user is logged into the client 102 via a first user session 1772,
while a second user is logged into the client 102 via a second
user session 1774. The first user session 1772 on the client
102 corresponds to a first user session 7178 on the server
106, while the second user session 1774 on the client 102
corresponds to a second user session 1776 on the server 106.
Each user session 1772, 1774, 1776, 1778 can communicate
with the ICA server client 1764, and each user session 1772,
1774, 1776, 1778 can communicate with the Anthem man-
ager 1766. Further each user session 1776, 1778 on the
server 106 is associated with provisional user session stor-
age 1770, 1770'". Each user session on the client 102 has an
instance of an installed applications store 1752, 1752', an
Anthem interface 1754, 1754' and an ICA client 1756, 7156'.
In one embodiment, a user of a client 102 can initiate a
communication session with the server 106. This commu-
nication session can result in the creation of a user session
on the client 102 and a user session on the server 106. In
some embodiments, within each user session on the server
106 are applications or application instances executing on
the server 106, a user profile comprised of application
configuration information particular to a specific user, a file
directory particular to a specific user, or other user-specific
information. In one embodiment, the user-session-specific
information is stored within the user session 1778, 1776 on
a server 106, while in other embodiments the user-session-
specific information is stored within provisional user session
storage 1770, 1770'. Each user session can communicate
with the Anthem manger 1766 on the server 106 and in some
embodiments each user session can include an instance of
the Anthem manager. In some embodiments, the user ses-
sions 1778, 1776 on the server can communicate with
anyone of the applications database 1762, the privileges
database 1758 and the client accounts database 1760. In one
embodiment, each user session can communicate with the
client accounts database 1760 such that a user, via the user
session, can retrieve information about their account. For
example, a use may be able to retrieve information about
how much money or credit they have in their account and in
some instances may be able to place more money or credit
into their account.

25

40

45

55

86

In some embodiments, a user may be barred from down-
loading or otherwise installing a new application until a
workflow request is granted. The user may select and
application for download. This selection can cause the
creation of a work order which, in some embodiments, is
displayed to the user so that the user can fill in information
relating to the application request. Information that can be
requested from the user may include: credit card details;
payment details; details regarding why the user has
requested the application, e.g., details about a project or
work assignment for which the application is needed; man-
ager and group details, e.g., whether the manager has given
approval, the manager’s contact information, group name or
department name; and any other details that may be used by
an administrator to determine whether a particular user
should have access to the requested application. In some
embodiments, the application is not downloaded into the
user’s Anthem folder until the workflow request has been
approved by the appropriate person. In other embodiments,
the application is provisionally downloaded into the user’s
Anthem folder for a limited period of time. If the user’s
workflow request is approved, then the application remains
in the user’s Anthem folder. If the user’s workflow request
is rejected, then the application is removed from the user’s
Anthem folder. Determining whether to provide provisional
application access can include reviewing how many times a
user has requested a particular application.

TMustrated in FIG. 19 is an embodiment of the Anthem
interface 1754, 1800. In one embodiment the Anthem inter-
face can include a listing of applications 1802, 1802', 1802",
1802™, 1802"", 1802™" that are either installed on the client
102, not installed on the client 102, available for download
by the user or available for the user to request via a
workflow. The applications 1802, 1802', 1802", 1802",
1802"", 1802™" can be a first application, a second appli-
cation, a third application, a fourth application, a fifth
application and any ‘n’ number of applications. Collectively
the applications can be referred to as applications 1802. The
applications 1802 can be display graphically via an icon
associated with the application and can be any one of: a web
application such as GOOGLE DESKTOP; an executable
application such as MICROSOFT WORD; an accelerator
client for a LAN, WAN or any other network; a desktop such
as Xen Desktop or any other desktop; a virtual machine; a
cloud application such as those provided by AMAZON; a
hypervisor; or any other application, virtual machine, desk-
top or hardware client provided as software able to be
deployed via the Anthem manager and the Anthem interface.
In some embodiments the application 1802 can be streamed
to the client 102, in other embodiments the application 1802
can be downloaded to the client 102, while in still other
embodiments the application 1802 can be remotely provided
to the client via a communication channel over which
graphical application output can be transmitted from the
server 106 to the client 102.

In some embodiments, the applications 1802 listed within
the Anthem interface 1800 can include those application
1802 that a user of a client 102 is authorized to download.
This list can be configured by an administrator through the
Anthem manager 7166 or via any other administrative
module or client communicating with either the Anthem
manager 1766 or the Anthem interface 1754. In one embodi-
ment, an administrator may generate a list of recommended
applications and these applications may be displayed within
the Anthem interface 1800 and in some embodiments may

US 9,461,996 B2

87

be displayed within the Anthem interface 1800 having a
notation next to them indicating that the application 1802 is
a recommended application.

In some embodiments, the Anthem interface 1800 can
include applications available on one or more virtual
machines executing on a local machine. In some embodi-
ments, when the Anthem interface 1800 is launched, a list of
applications is downloaded into a user’s profile. These
applications are then displayed within the Anthem interface
1800 as though they were available through the Anthem
program. These programs, in some embodiments, can
include programs that are locally available on a computing
machine and that are accessible via a virtual machine
executing on the local computing machine.

In some embodiments, one or more virtual machines can
execute on a local computing machine hosting or otherwise
executing the Anthem interface 1800 and accompanying
program. The virtual machines can further execute or host
one or more applications available only when the virtual
machine executes on the local computing machine. In one
example, a user can access the Anthem interface 1800 via a
first computing machine. Installed on the first computing
machine can be a first virtual machine for accessing the
user’s local desktop, and a second virtual machine for
accessing the user’s work desktop. Either of these desktops
can be remotely hosted, or can be locally hosted by the
virtual machine. Management and selection of which virtual
machine to execute can be done via a hypervisor executing
on the first computing machine. Each virtual machine can
comprise a unique computing environment such that the first
virtual machine can execute and otherwise provide a first set
of applications, while the second virtual machine can
execute and otherwise provide a second set of applications.
The Anthem interface 1800, when launched, lists out each of
the first set of applications and the second set of applica-
tions. This information can be provided to the Anthem
interface 800 by a program executing on the first computing
machine and communicating with the Anthem manager to
provide the program with information regarding computing
environments on the first computing machine.

In one embodiment next to each application 1802 is a
button to either add or delete the application. In embodi-
ments where a particular application is not yet installed on
the client 102, an add button 1812, 1814, 1816, 1822 is
displayed next to the application. In embodiments where the
application is already installed on the client 102, a delete
button 1818, 1820 is displayed next to the application.
Additional buttons can include a button 1806 to delete all the
applications installed on the client 102, while a button 1808
to add all the applications installed on the client 102 can be
included within the Anthem interface 800. In some embodi-
ments the Anthem interface 1800 can include a profile
connection manager 1810, while in other embodiments the
interface 1800 can include a folder of all the applications
installed on the client 102 and therefore installed within a
user’s profile.

lustrated in FIG. 20 is an embodiment of a method for
generating a stub application. When a user clicks on the add
button to install an application, the application generator
1768 can in some embodiments respond to this event by
carrying out the steps needed to create an application
skeleton or stub application associated with the selected
application. In one embodiment, the application generator
7168 receives the application information which can include
an application identifier, an application name or any other
information that can be used by the application generator
1768 to identify the application (Step 2002). Once the

20

30

40

45

55

88

application generator 1768 receives the application identi-
fying information, the application generator 1768 can down-
load from the applications database 1762 or from any other
storage repository, table or other memory location, informa-
tion regard the application (Step 2004). Using the retrieved
application information, the application generator 1768 can
then obtain path information for the application (Step 2006).
Using each of the application information, the application
path information and any other application or user-specific
information, the application generator 1768 can then gen-
erate the stub application (Step 2010).

Once the stub application is generated, the server 106 can
transmit the stub application to the client 102. In some
embodiments, the Anthem interface 1800 comprises a man-
agement component that retrieves the stub application and
performs the steps illustrated in FIG. 10 to install the stub
application onto the client 102 and into the user’s profile.
When the stub application is installed on the client 102, in
some embodiments an entry is inserted into the installed
application store 1752 indicating that an application asso-
ciated with the stub application was installed on the client
102 and into that user’s profile. In other embodiments, the
Anthem manager 1766, prior to transmitting the stub appli-
cation to the client 102, installs the stub application into the
user’s profile which can include generating entries in any
one of the provisional user session storage, the privileges
database 1758 and the client accounts database 1760 indi-
cating that the user profile now contains the application for
which the stub application was generated.

Tustrated in FIG. 21 is one embodiment of a process for
installing the stub application on the client 102. In one
embodiment a management module or client within the
Anthem interface 1800 receives the stub application from
the server 106 (Step 2012) and interacts with an operating
system installer or other installer program to issue a com-
mand to the installer program to install the stub application
(Step 2014). Subsequent to the management module’s issu-
ance of an install command, an installer program on the
client 102 can install the stub application on the client 102
(Step 2016).

In some embodiments, once the stub application is
installed on the client 102, the operating system and oper-
ating system components can interact with the stub appli-
cation as though it were a fully installed application. For
example, an icon of the stub application can be displayed in
the task bar, on the desktop, in the start menu or otherwise
be displayed or treated as though it were a fully installed
application. When a user clicks on an icon representative of
the stub application, an application window can open and a
communication connection can be established between the
application window a remote computing machine. In some
embodiments, this communication connection can be an
ICA communication channel. In other embodiments, the
communication connection can be a channel over which the
client 102 and server 106 can communicate via a presenta-
tion level protocol. The stub application may include an
application path such that when an icon associated with the
stub application is clicked or otherwise selected, a window
opens up and attempts to retrieve or connect to an applica-
tion or application file designated by the application path
identified within the stub application.

In some embodiments, multiple icons can exist on a client
102 for a particular application. For example, the client 102
may have a full version of MICROSOFT WORD installed
locally on the client 102 and an icon may be displayed on the
client 102 that is associated with this version of MICRO-
SOFT WORD. However, another icon may be displayed on

US 9,461,996 B2

89

the client 102 that is associated with a version of MICRO-
SOFT WORD installed by the Anthem interface and asso-
ciated with a stub application. Thus, when the stub appli-
cation icon is selected, a remote application is either
streamed to the client 102 or an application window is
displayed on the client 102 and within the window graphical
application output from a remotely located application
executing on a remote computing machine is displayed.
Thus, in this type of embodiment, two MICROSOFT
WORD icons may be displayed on the client 102. In one
embodiment, a user may use the Anthem interface 1800 to
design a virtual machine and issue a workflow request for
the virtual machine. Once this workflow request is satisfied,
the user may be able to access their virtual machine (e.g., the
virtual machine they designed using the Anthem interface
1800) via the Anthem interface 1800. Similarly, a user may
be able to use the Anthem interface 1800 to design desktops
and retrieve a uniquely designed desktop. Allowing a user to
install applications via the Anthem interface 1800 can be
referred to as self-subscription in that a user is able to
self-subscribe to applications that are available to them.
Thus, users may construct a profile of applications that are
designed to fit the user’s particular needs. Accordingly, the
user may choose not to include certain applications within
the profile. When a user wishes to install into their profile an
application not available to them through the Anthem inter-
face, the user may submit a workflow request for that
application. Responsive to this request, an administrator
may alter the user’s privileges within the privileges database
1758 such that the next time the user logs into the Anthem
interface 1800, the application they requested is available for
download.

Another aspect of the Anthem interface 1800 can be a
synchronization module which can be used to synchronize
the applications downloaded onto one or more machines.
For example if a user logs into to a first computing machine
and downloads Applications 1 and 2, but then logs into a
second computing machine for the first time; it is likely that
the second computing machine will not include the Appli-
cation 1 and Application 2 stub applications. A synchroni-
zation mechanism or module within the Anthem interface
1800 or within the Anthem manager 1766 can be configured
to automatically download stub applications for Application
1 and 2 each time a user logs into a new machine. Thus,
when the user logs onto the second computing machine,
either the Anthem interface 1800 or the Anthem manager
1766 can immediately construct stub applications corre-
sponding to Applications 1 and 2, download the stub appli-
cations on the second computing machine and install the
stub applications on the second computing machine.

J. Systems and Methods for Accessing Applications on
Remote Servers Program Neighborhood

The user of either client node 102A and 102N is able to
learn of the availability of application programs hosted by
the application servers 106A, 106B, and 106N, such as
published applications, in the network 104 without requiring
the user to know where to find such applications or to enter
technical information necessary to link to such applications.
These available application programs comprise the “pro-
gram neighborhood” of the user. A system for determining
a program neighborhood for a client node includes an
application program (hereafter referred to as the “Program
Neighborhood” application), memory for storing compo-
nents of the application program, and a processor for execut-
ing the application program.

The Program Neighborhood application may be installed
in memory of the client node 102A and/or on the application

10

15

20

25

30

35

40

45

50

55

60

65

90

servers 106A, 106B and 106N as described below. The
Program Neighborhood application is a collection of one or
more services, applications program interfaces (APIs), and
user interface (UI) programs that disclose to users of the
client nodes 102A, 102N those application programs hosted
by the application servers that each client node is authorized
to use (e.g., execute).

An application server operating according to the Program
Neighborhood application collects application-related infor-
mation from each of the application servers in a server farm.
The application-related information for each hosted appli-
cation may be a variety of information including, for
example, an address of the server hosting that application,
the application name, the users or groups of users who are
authorized to use that application, and the minimum capa-
bilities required of the client node before establishing a
connection to run the application. For example, the appli-
cation may stream video data, and therefore a required
minimum capability is that the client node supports video
data. Other examples are that the client node can support
audio data or can process encrypted data. The application-
related information may be stored in a database as described
later in the specification.

When a client node logs onto the network 104, the user of
the client node provides user credentials. User credentials
typically include the username of the client node, the pass-
word of the user, and the domain name for which the user is
authorized. The user credentials may be obtained from smart
cards, time-based tokens, social security numbers, user
passwords, personal identification (PIN) numbers, digital
certificates based on symmetric key or elliptic curve cryp-
tography, biometric characteristics of the user, or any other
means by which the identification of the user of the client
node can be obtained and submitted for authentication. The
server responding to the client node can authenticate the user
based on the user credentials. The user credentials can be
stored wherever the Program Neighborhood application is
executing. When the client node 102A executes Program
Neighborhood application, the user credentials may be
stored at the client node 102A. When an application server
is executing the Program Neighborhood, the user credentials
may be stored at that server. From the user credentials and
the application-related information, the server may deter-
mine which application programs hosted by the application
servers are available for use by the user of the client node.
The server transmits information representing the available
application programs to the client node. This process elimi-
nates the need for a user of the client node to set-up
application connections. Also, an administrator of the server
can control access to applications among the various client
node users.

The user authentication performed by the server may
suffice to authorize the use of each hosted application
program presented to the client node, although such appli-
cations may reside at another server. Accordingly, when the
client node launches (i.e., initiates execution of) one of the
hosted applications, additional input of user credentials by
the user may be unnecessary to authenticate use of that
application. Thus, a single entry of the user credentials may
serve to determine the available applications and to autho-
rize the launching of such applications without an addi-
tional, manual log-on authentication process by the client
user.

Either a client node 102A, 102N or an application server
may launch the Program Neighborhood application. The
results are displayed on the display screen of the client node
102A, 102N. In a graphical windows-based implementation,

US 9,461,996 B2

91

the results may be displayed in a Program Neighborhood
graphical window and each authorized application program
may be represented by a graphical icon in that window. One
embodiment of the Program Neighborhood application fil-
ters out application programs that the client node 102A,
102N is unauthorized to use and displays only authorized
(i.e., available) programs. In other embodiments, the Pro-
gram Neighborhood application displays authorized and
unauthorized applications. When unauthorized are not fil-
tered from the display, a notice may be provided indicating
that such applications are unavailable. In other embodi-
ments, the Program Neighborhood application may report
all applications hosted by the application servers 106A,
106B, and 106N to the user of a client node, without
identifying which applications the client node 102A, 102N
is authorized or unauthorized to execute. Authorization may
be subsequently determined when the client node 102A,
102N attempts to run one of those applications.

The following is an exemplary process by which a server
launches the Program Neighborhood (PN) application and
presents results of the PN application to the client node
102A. The server may launch the PN application in response
to a request by the client node 102A for a particular
application program. The request passes to the master server
node, in this example server 106 A. The master server node
106A, taking load-balancing and application availability
into account, indicates (to the client node 102A that the
sought-after application is available on server 106B. The
client node 102A and server 106B establish a connection (.
By this connection, the server 106B may transfer the execut-
able code of the particular application to the client node
102A, when the client node 102A and server 106B are
operating according to the client-based computing model. In
other embodiments, the server 106B may execute the par-
ticular application and transfer the graphical user interface to
the client node 102A, when the client node 102A and server
106N are operating according to the server-based computing
model. In addition, either the master server node 106 A or the
server 106B can execute the Program Neighborhood appli-
cation 41 and push the results back to the client node 102A
so that when the client node 102A requests the Program
Neighborhood application, the program neighborhood is
already available at the client node 102A.

The following is another exemplary process by which the
client node 102N initiates execution the Program Neighbor-
hood application and a server presents the results of the PN
application to the client node 102N. The client node 102N
launches the Program Neighborhood application (e.g., by
clicking on the Program Neighborhood icon representing the
application). The request for the Program Neighborhood
application is directed to the master server node, in this
example server 106A. The master server node 106 A may
execute the Program Neighborhood application, if the appli-
cation is on the master server node 106N, and return the
results to the client node 102N. In other embodiments, the
master server node 106A may indicate to the client node
102N that the Program Neighborhood application is avail-
able on another server, in this example server 106B. The
client node 102N and server 106N establish a connection by
which the client node 102A requests execution of the
Program Neighborhood application. The server 106B may
execute the application and transfer the results (i.e., the
graphical user interface) to the client node 102A.

The following is another exemplary process by which a
client node 102A initiates execution of the Program Neigh-
borhood application, in this example via the World Wide
Web. A client node 102N executes a web browser applica-

10

15

20

25

30

35

40

45

50

55

60

65

92
tion, such as NETSCAPE NAVIGATOR, manufactured by
Netscape Communications, Inc. of Mountain View, Calif. or
MICROSOFT INTERNET EXPLORER, manufactured by
Microsoft Corporation of Redmond, Wash.

The client node 102N, via the web browser, transmits a
request to access a Uniform Resource Locator (URL)
address corresponding to an HTML page residing on server
106N. In some embodiments the first HTML page returned
to the client node 102N by the server 106N is an authenti-
cation page that seeks to identify the client node 102N.

The authentication page allows the client node 102N to
transmit user credentials, via the web browser, to the server
106N for authentication. Transmitted user credentials are
verified either by the server 106N or by another server in the
farm. This allows a security domain to be projected onto the
server 106N. For example, if the server 106N runs the
WINDOWS NT operating system, manufactured by Micro-
soft Corporation of Redmond, Wash., and the authenticating
server runs the UNIX operating system, the UNIX security
domain may be said to have been projected onto the server
106N. User credentials may be transmitted “in the clear,” or
they may be encrypted. For example, user credentials may
be transmitted via a Secure Socket Layer (SSL) connection,
which encrypts data using the RC3 algorithm, manufactured
by RSA Data Security, Inc. of San Mateo, Calif.

The server 106N may verify the user credentials received
from the client node 102N. Alternatively, the server 106N
may pass the user credentials to another server for authen-
tication. In this embodiment, the authenticating server may
be in a different domain from the server 106N. Authenticated
user credentials of the client node 102N may be stored at the
client node 102N in a per-session cookie, in fields that are
not displayed by the web browser 480, or in any other
manner common in maintenance of web pages. In some
embodiments, a server farm with which the server 102N is
associated may allow guest users, i.e., users that do not have
assigned user credentials, to access applications hosted by
servers in the farm. In these embodiments, the authentication
page may provide a mechanism for allowing a client node
102N to identify that it is a guest user, such as a button or
menu selection. In other of these embodiments, the server
106N may omit the authentication page entirely.

Once the client node 102N is authenticated by the server
106N, the server prepares and transmits to the client node
102N an HTML page that includes a Program Neighborhood
window 458 in which appears graphical icons representing
application programs to which the client node 102N has
access. A user of client node 102N invokes execution of an
application represented by icon by clicking that icon.

The following is an exemplary process of communication
among the client node 102A, the master server node, in this
example server 106A, and the server 106N. The client node
102A has an active connection with the server 106N. The
client node 102A and server 106N may use the active
connection 472 to exchange information regarding the
execution of a first application program. The user credentials
of the client node 102A are stored at the client node. Such
storage of the user credentials may be in cache memory or
persistent storage.

In this embodiment, the Program Neighborhood applica-
tion runs on the client node 102A. The client node display
has a Program Neighborhood window in which appears a
graphical icon representing a second application program. A
user of the client node 102A may launch the second appli-
cation program by double-clicking the icon with the mouse.
The request passes to the master server node 106A via a
connection. The master server node 106A indicates to the

US 9,461,996 B2

93

client node 102A via the connection that the sought-after
application is available on server 106N. The client node
102A signals the server 106N to establish a second connec-
tion 470. The server 106N requests the user credentials from
the client node 102A to authenticate access to the second
application program. Upon a successful authentication, the
client node 102A and server 106N establish the second
connection and exchange information regarding the execu-
tion of the second application program. Accordingly, the
client node 102A and the server 106N communicate with
each other over multiple connections.

The following is an exemplary process of communication
among the client node 102N, the master server node, in this
example server 106A, and servers 106B, and 106N. The
client node 102N has an active connection with the server
106B. The client node 102N and server 106N may use the
active connection to exchange information regarding the
execution of a first application program. The user credentials
of the client node 102N are stored at the server 106B in
cache memory or in persistent storage. In this embodiment,
the Program Neighborhood application runs on the server
106B. The server 106B includes software providing a
server-based client engine, enabling the server 106B to
operate in the capacity of the client node 102N. The client
node 102N display has a Program Neighborhood window in
which appears graphical icons representing a second appli-
cation program and a third application program, respec-
tively. A user of the client node 102N may launch the second
application program by double-clicking the icon. The
request to launch the second application program passes to
the server 106B via active connection, and the server 1068
forwards the request to the master server node 106).

The master server node 106 A indicates to the server 106C
that the sought-after application is available on server 106B.
The server 106C contacts the server 106B to establish a
connection 466. To authenticate access to the application,
the server 106B obtains the user credentials of the client
node 102N from the server 106C. The server 106C and
server 106B establish the connection by which the server
106C requests execution of the second application and the
server 106B returns the graphical user interface results to the
server 106C. The server 106C forwards the graphical user
interface results to the client node 102A, where the results
are displayed. Accordingly, the information exchanged
between the client node 102A and the server 106B “passes
through” the server 106C. Similarly, the client node 102A
may launch the third application program by double-clicking
the icon. The request to launch the third application program
passes to the server 106C. The server 106C forwards the
request to the master server node 106A, which considers
load-balancing and application program availability to deter-
mine which server can handle the request. In this example,
the master server node indicates that server 106N may run
the third application program.

The server 106C and server 106N establish a connection
by which the server 106C requests execution of the third
application program, and the server 106N returns the graphi-
cal user interface results to the server 106C. To permit
execution of the third application program, the server 106N
may authenticate the user credentials of the client node
102N which are obtained from the server 106C. The server
106C forwards the graphical user interface results to the
client node 102N where the results are displayed. Accord-
ingly, the results of executing the third application program
pass between the client node 102N and the server 106N
through the server 106C.

5

10

15

20

25

30

35

40

45

50

55

60

65

94

From this illustration it should be understood that client
node 102N may run multiple application programs through
one connection with the server 106C, while the server 106C
maintains multiple connections (in this example, one con-
nection with server 106B and a second connection with
server 106N). Also, the server 106C merges the information
received from the server 106B with the information received
from the server 106N into one data stream for transmission
to the client node 102A.

The following an exemplary process of communication
among the client node 102, the master server node, in this
example server 106A, and servers 106B and 106N. The
client node 102 has an active connection with the server
106B. The client node 102 and server 106B may use the
active connection to exchange information regarding the
execution of a first application program. The client node 102
may store the user credentials in cache memory or in
persistent storage.

In this embodiment, the Program Neighborhood applica-
tion runs on the server 106B. The client node 102 display has
a Program Neighborhood window 458 in which appears a
graphical icon 457 representing a second application pro-
gram. A user of the client node 102 may launch the second
application program by double-clicking the icon. The
request to launch the second application program passes to
the server 106B. The server 106B responds (i.e., “calls
back™) to the client node 102 by returning application-
related information such as the name of the application and
capabilities needed by the client node 102 for the second
application to run.

With the information provided by the server 106B, the
client node 102 then communicates with the master server
node 106A via connection to determine the server for
executing the second application program. In this example,
that server is server 106N. The client node 102 then estab-
lishes a connection to the server 106N. Server 106N requests
the user credentials from the client node 102 to authenticate
the user of the client node 102. The second application
program executes on the server 106N, and the server 106N
returns the graphical user interface to the client node 102 via
the established connection. Accordingly, the client node 102
may have multiple active connections between the multiple
servers.

The following is an exemplary process of communicating
between the client node 102, a server 106A that in this
example acts as a web server, and server 106N. The client
node 102 authenticates itself to the server 106A. In one
embodiment, the server 106 A accesses an output display
template, such as an SGML, HTML or XML file, to use as
a base for constructing the Program Neighborhood window
to transmit to the client node 102. The template may be
stored in volatile or persistent memory associated with the
server 106A or it may be stored in mass memory, such as a
disk drive or optical device. In this embodiment, the tem-
plate is a standard SGML, HTML, or XML document
containing Program Neighborhood-specific tags that are
replaced with dynamic information. The tags indicate to the
server 106 A where in the output display to insert informa-
tion corresponding to available applications, such as icon
images. In one embodiment, the Program Neighborhood-
specific tags are embedded within comments inside the file,
allowing the file to remain compatible with standard inter-
preters. In another embodiment, the Program Neighbor-
hood-specific tags are extensions of the markup language
used as the base for the template.

Examples of HTML tags that may be used in a template
are set forth below in Table 1:

US 9,461,996 B2

95
TABLE 1

Tag

Description

ControlField_ /zeW value

DrawProgramNeighborhood

This tag is used to set the value of data that either persists
between Program Neighborhood web pages, are set by the
user, or are used to help in cross page navigation, such as
user name, domain, password, template, and application
His tag is used to draw a Program Neighborhood display

96

at this location in an output display

AppName This tag is replaced by the name of the published
application in the current context.
WindowType This tag is replaced by the window type of the published

application in the current context.
WindowHeight
application in the current context.
WindowWidth
application in the current context.
WindowScale
application in the current context.
‘WindowColors
application in the current context.

This tag is replaced by the window height of the published
This tag is replaced by the window width of the published
This tag is replaced by the window scale of the published

This tag is replaced by the color depth of the published

SoundType This tag is replaced by the sound setting of the published
application in the current context.

VideoType This tag is replaced by the video setting of the published
application in the current context.

EncryptionLevel This tag is replaced by the encryption level of the
published application in the current context.

Icon This tag is replaced by the icon of the published

application in the current context.

Other tags may be provided to set control fields and to
provide conditional processing relating to the Program
Neighborhood application.

In one embodiment, the template is constructed dynami-
cally using, for example, COLD FUSION, manufactured by
Allaire Corp. of Cambridge, Mass. or ACTIVE SERVER
PAGES manufactured by Microsoft Corporation of Red-
mond, Wash. In other embodiments, the template may be
static. The Program neighborhood application parses the
template, replacing Program Neighborhood-specific tags as
noted above. Tags that are not Program Neighborhood-
specific are left in the file to be parsed by the browser
program 480 executing on the client 102.

In one embodiment, a template parser object is provided
that accepts an HTML template as input, interprets Program
Neighborhood-specific tags present in the template, and
output the original template with all Program Neighborhood
tags replaced with appropriate text. The template parser
object may be passed a cookie, a URL query string, or a
control field from a web server interface to provide the
information with which Program Neighborhood-specific
tags should be replaced.

In another embodiment, the Program Neighborhood
application allows scripts to access to information via an
application programming interface. Scripts may be written
in, for example, VBScript or Jscript. In this embodiment, the
scripting language is used to dynamically generate an output
display using information returned by the application in
response to queries posed by the script. Once the output
display is generated, it is transmitted to client node 102 for
display by the browser program.

A user of the client node 102 can launch an application by
clicking or double-clicking with a mouse an icon displayed
in the Program Neighborhood web page. In some embodi-
ments, each icon is an encoded URL that specifies: the
location of the application (i.e., on which servers it is hosted
or, in some embodiments, the address of a master server); a
launch command associated with the application; and a
template identifying how the output of the application
should be displayed (i.e., in a window “embedded” in the

30

35

40

45

50

55

60

65

browser or in a separate window). In some embodiments, the
URL includes a file, or a reference to a file, that contains the
information necessary for the client to create a connection to
the server hosting the application. This file may be created
by the Program Neighborhood application dynamically. The
client node 102 establishes a connection with the server
identified as hosting the requested application (in this
example, server 106N) and exchanges information regarding
execution of the desired application. In some embodiments,
the connection 494 is made using the Independent Comput-
ing Architecture (ICA) protocol, manufactured by Citrix
Systems, Inc. of Fort Lauderdale, Fla. Thus, the client node
102 may display application output in a window separate
from the web browser 460, or it may “embed” application
output within the web browser.

Neighborhood application or the client-based computing
model in which the client node 102A executes the Program
Neighborhood application locally. The Program Neighbor-
hood application includes a Program Neighborhood Service
(PNSVC) component, an Application Database component,
a Program Neighborhood Application Program Interface
(PNAPI) component, a Program Neighborhood User Inter-
face component, and a local cache. The application server
106A, for example, includes the service component
(PNSVC) and the application database. The client node
102A, which is a representative example of a client node that
may support a client-based implementation of the Program
Neighborhood application, includes the application program
interface PNAPI 452, the user interface component, and the
local cache components. The PNAPI 452 communicates
with the user interface component and the local cache. The
PNSVC 444 communicates with the application database
and with the PNAPI on the client node 102A via commu-
nications link.

The communications link may be established by, for
example, using the ICA protocol. ICA is a general-purpose
presentation services protocol designed to run over industry
standard network protocols, such as TCP/IP, IPX/SPX, Net-
BEUI, using industry-standard transport protocols, such as
ISDN, frame relay, and asynchronous transfer mode (ATM).

US 9,461,996 B2

97

The ICA protocol provides for virtual channels, which are
session-oriented transmission connections that may be used
by application-layer code to issue commands for exchanging
data. The virtual channel commands are designed to be
closely integrated with the functions of client nodes. One
type of virtual channel connection supported by the ICA
protocol is a Program Neighborhood virtual channel. The
Program Neighborhood virtual channel protocol may
include four groups of commands:

(1) initialization-related commands;

(2) single authentication related commands that can be
supported by each client node wanting a copy of the
user credentials;

(3) application data related commands for implementing
the Program Neighborhood user interface; and

(4) application launch callback-related commands for
running the user interface on an application server.

Application Database

The application database is a cache of the authorized user
and group information for all the public (i.e., published)
applications in a server farm or in a group of trusted
domains. Each server in a server farm may maintain its own
application-related information in persistent storage and
build up the database in volatile storage. In another embodi-
ment, all collected application-related information in the
database are stored in persistent storage and made accessible
to each other server in the server farm.

The database may be implemented in a proprietary format
(e.g., as a linked list in memory) or using Novell’s Directory
Services (NDS) or any directory service adhering to the
X.500 standard defined by the International Telecommuni-
cation Union (ITU) for distributed electronic directories.
The application database 448 includes a list of application
servers. Each server in the list has an associated set of
applications. Associated with each application is applica-
tion-related information that can include the application
name, a list of servers, and client users that are authorized to
use that application. An overly-simplified example of the
application-related information maintained in the database is
illustrated by the following

TABLE 2
Applications
Customer

Server Name Spreadsheet Database Word Processor Calculator
Server 106A User A User B na —
Server 106B User B n/a User A —
Server 106N User A

User B

Users A and B are users of the client nodes 102A, 102N,
“n/a” indicates that the application is hosted, but is not
available to client node users, and “-” indicates that the
application is not hosted.

Table 2 shows a list of servers 106A, 1068, 106N, the
applications hosted by the servers, (Spreadsheet, Customer
Database, Word Processor, and Calculator), and those users
who are authorized to use the applications. For example,
server 106 A hosts the Spreadsheet program, the Customer
Database and the Word Processor. User A is authorized to
use the Spreadsheet, User B is authorized to use the Cus-
tomer Database, and no users are authorized to use the Word
Processor. It is to be understood that other techniques can be
used to indicate who is authorized to use a particular
application. For example, the user information stored in the

10

15

25

30

35

40

45

50

55

60

65

98

database can be used to indicate those users who are
unauthorized to use a particular application rather than those
who are authorized.

To obtain the information that is stored in the database, the
server 106A obtains the application-related information
from each other server in the server farm regarding the
applications on those servers, including control information
that indicates which client users and servers are permitted to
access each particular application. The application-related
information maintained in the database may or may not
persist across re-boots of the server 106A.

The application database can be a central database that is
stored at the application servers 106A and is accessible to all
of the servers in the server farm. Accordingly, the applica-
tion-related information can be available for use by other
servers such as those servers that perform published appli-
cation authentication during session log-on and application
launching. In another embodiment, the application database
is maintained at each of the application servers based upon
the information that each server obtains from communica-
tions with each other server in the server farm.

Program Neighborhood Service Program (PNSVC)

Each server 106A, 106B, and 106N having the Program
Neighborhood application installed thereon executes the
PNSVC software. The PNSVC software, operating on each
server 106 A, 1068, and 106N establishes a communication
link (e.g., a named pipe) with each other server. The servers
106A, 106N, and 106N exchange the application-related
information on the named pipes. In another embodiment, the
PNSVC software 444 collects the application-related infor-
mation from the other servers in the server farm through
remote registry calls (e.g., the service component transmits
a datagram to other servers in the plurality requesting the
application-related corresponding to the application pro-
grams hosted by those servers). The PNSVC software also
maintains the relationships of groups and users to published
applications in the application database and accesses the
information when authenticating a client user. An adminis-
trator of the server 106A may use a user interface to
configure the PNSVC.

Other functions of the PNSVC software include imple-
menting the services and functions requested by the PNAPI
and communicating with the PNAPI 452 on the client node
102A using a Program Neighborhood virtual device driver
(VDPN). The VDPN operates according to the Program
Neighborhood virtual channel protocol described above for
establishing and maintaining an ICA connection.

Program Neighborhood Application Program Interface
(PNAPI)

The PNAPI is a set of software functions or services that
are used by the Program Neighborhood application to per-
form various operations (e.g., open windows on a display
screen, open files, and display message boxes). The PNAPI
provides a generic mechanism for launching application
objects (e.g., icons) produced by running the Program
Neighborhood application and application objects in a
legacy (i.e., predecessor or existing for some time) client
user interface. When the client node 102A launches an
available application, the launch mechanism may launch the
application on the server 106A, if necessary (e.g., when the
client node 102A does not have the resources to locally
execute the application).

The PNAPI provides all published application informa-
tion to the user interface component 456 for display on the
screen of the client node 102A. The PNAPI also manages
server farm log-ons in a local database of logon credentials
(e.g., passwords) for users of the client node 102 A to support

US 9,461,996 B2

99

the single authentication feature. Credentials may or may
not be persistent across bootings (power-off and on cycles)
of the client node 102A.

The PNAPI provides automatic and manual management
for Program Neighborhood application objects stored in the
local cache. The local cache may be refreshed manually by
the user of the client node 102A, or at a user-definable
refresh rate, or by the server at any time during a connection.
In a Windows implementation, the PNAPI builds remote
application file associations and manages the “Start” menu
and desktop icons for application object shortcuts.
Program Neighborhood User Interface

The user interface module interfaces the PNAPI and may
be a functional superset of an existing client-user interface
(e.g., Remote Application Manager). The user interface
module accesses the information stored in the local cache
through the PNAPI and visually presents that information to
the user on the display screen of the client node 102A. The
displayed information is a mixture of information generated
by a user of the client node 102A and information obtained
by the Program Neighborhood application. The user inter-
face module may also show the user all applications that the
user is currently running and all active and disconnected
sessions.

In a windows-based embodiment, the user interface mod-
ule may present a variety of graphical components, such as
windows and pull-down menus, to be displayed on the
display screen. A display of a combination of such graphical
user interface components is generally referred to as a
“desktop.” A desktop produced by the user interface module
456 may include a Program Neighborhood window display-
ing the neighborhood of application programs available to
the user of the client node 102A for use. These application
programs are a filtered combination of the published appli-
cations hosted by a server farm on the network. The user
interface module 456 may generate a Program Neighbor-
hood window for each server farm or merge the applications
from different server farms under a single Program Neigh-
borhood window.

At a top level, the Program Neighborhood window
includes a folder for each server farm. Clicking on one of the
folders with the mouse produces a window containing a
representation (e.g., an icon) of each hosted application
available to the user. The Program Neighborhood window
becomes the focal point for launching published applica-
tions, and the user interface module may be used to launch
applications through the PNAPI example, the user of the
client node 102A may use the mouse to select one of the
displayed icons and launch the associated application.

A feature of a client-based implementation is that the user
may browse the objects displayed in the Program Neigh-
borhood window although the client node is offline, that is,
the ICA connection is inactive. Also, a user of the client node
102A may drag application objects and folders out of the
Program Neighborhood window and into other graphical
components (e.g., other windows, folders, etc.) of the desk-
top.

The following is an example arrangement of program
components for a server-based implementation of the Pro-
gram Neighborhood application. The components include a
Service (PNSVC) component, an Application Database
component, an Application Program Interface (PNAPI)
component, a User Interface component and a local cache.
Each software component is installed on the application
server 106 A. The software components for the server-based
implementation may correspond to the software components
for the client-based implementation described above. The

10

15

20

25

30

40

45

55

60

100

functionality of each server-based software component may
be similar to or the same the client-based counterpart, with
differences or added capabilities described below. The
PNSVC communicates with the application database and
with the PNAPI using local procedure calls. The PNAPI also
communicates with the user interface module 456' the local
cache.

Similar to that described for the client node 102A, the
client node 102N logs on to the network 104, the server
106A develops and maintains a database containing the
application related information collected from the other
servers 1068, 106N in the server farm, and a communication
link is established between the server 106A and the client
node 102N.

The application server 106 A is in communication with the
client node 102N via an ICA channel connection. The
channel connection may be established by an ICA virtual
channel protocol (e.g., Thinwire). The Thinwire protocol can
be used to transmit presentation commands from Windows-
based applications running on the application server 106A to
the client node 102N. To a user of the client node 102N, the
applications appear to be running on the client node 102N.
The client node 102N may include a Remote Application
Manager application program that communicates with the
application server 106A via the ICA channel connection.

To run the Program Neighborhood application in a server-
based implementation, the user of the client node 102N
connects to an initial desktop (at the server 106A) and
launches the Program Neighborhood application from
within that desktop environment. The connection to the
initial desktop can occur automatically, e.g., via a logon
script of the client node 102N, via an entry in the StartUp
group in Windows 95, or by another centrally managed
server specific mechanism. All remote application manage-
ment and launching is accomplished through this initial
desktop.

Similar to that described above for the server 106A, the
server 106 uses the user credentials to determine those
application programs that are authorized for use by the user
of'the client node 102N. A Program Neighborhood graphical
window is returned to the client node 102N and displayed on
the client screen. This window may include icons represent-
ing the available and, possibly, the unavailable application
programs that are in the program neighborhood of the client
node 102N.

The user of the client node 102N may select and launch
one of the application programs displayed in the Program
Neighborhood window. When launching an application, the
Program Neighborhood application can execute the appli-
cation on the same server 106, where applicable, taking into
account load balancing requirements among servers and the
availability of the application on that server 106. The PNAPI
can include a launch mechanism for launching a remote
application locally on the server 106 when the server 106 is
nominated to launch the application. When a different server
is needed to run the application, the Program Neighborhood
application may launch the application via the server 106
(i.e., server-based client) using the windows to present the
application on the desktop of the client node 102N.

In one embodiment, the web-based Program Neighbor-
hood application includes a group of objects that manage
various aspects of the application. In one embodiment, the
application includes three primary object classes that “plug
in” to a web server: a gateway object class; a credentials
object class; and an application object class. In some specific
embodiments, the object classes are provided as Java beans.
The three primary object classes facilitate: validation of user

US 9,461,996 B2

101

credentials into a server farm; generation of lists of pub-
lished applications that a specified user may access; provi-
sion of detailed information about a specific published
application; and conversion of published application infor-
mation into an ICA-compatible format.

When provided as Java beans, the objects may be
accessed in a number of different ways. For example, they
may be compiled as COM objects and made available to the
web server as ActiveX components. In another embodiment,
the Java beans can be used in their native form, such as when
the server uses Java Server Pages technology. In yet another
embodiment, the Java beans may be instantiated and used
directly in a Java servlet. In still another embodiment, the
server 106 may instantiate the Java beans as COM objects
directly.

A credentials object class manages information necessary
to authenticate a user into a target server farm. A credentials
object passes stored user credentials to other Program
Neighborhood objects. In some embodiments, the creden-
tials object is an abstract class that cannot be instantiated and
represents a user’s credentials. Various class extensions may
be provided to allow different authentication mechanisms to
be used, including biometrics, smart cards, token-based
authentication mechanisms such as challenge-response and
time-based password generation, or others. For example, a
“clear text credentials” extension may be provided that
stores a user’s name, domain, and password in plain text.

A gateway object class handles communications with a
target server farm. In one embodiment, the gateway object
class is provided as an abstract Java class that cannot be
instantiated. A particular gateway object may retrieve appli-
cation information by communicating with a server farm
using a particular protocol, reading cached application infor-
mation, a combination of these two methods, or other
various methods.

As noted above, the gateway object class caches infor-
mation to minimize communication with a target server
farm. Extensions to the gateway object may be provided to
communicate with the server farm over specific protocols,
such as HTTP. In one embodiment, an extension class is
provided that allows the gateway object to communicate
with the server farm via WINDOWS NT named pipes. The
gateway object may provide an application programming
interface hook that allows other Program Neighborhood
objects to query the object for application information.

An applications object class contains information about
published applications and returns information about appli-
cations hosted by the server farm in order to create the
Program Neighborhood web page. The applications object
class creates objects representing applications by retrieving
information relating to the applications, either from an
object created by the gateway object or directly from the
servers in the server farm. An applications object acts as a
container for certain properties of the application, some
settable and some not settable, such as: the name of the
application (not settable); the percentage of the client’s
desktop that the client window should occupy (settable); the
width of the client window, in pixels, for this application
(settable); the height off the client window, in pixels, for this
application (settable); the number of colors to use when
connecting to the application (settable); the severity of audio
bandwidth restriction (settable); the level of encryption to
use when connecting to the application (settable); the level
of video to use when connecting to this application (set-
table); whether the application should be placed on a client’s
start menu (settable); whether the application should be
placed on the client’s desktop (settable); the identity of the

10

15

20

25

30

35

40

45

50

55

60

65

102

Program Neighborhood folder to which the application
belongs (settable); the description of the application (set-
table); the source of the graphics icon file for the application
(settable); the type of window that should be used when
connecting to the application (not settable); and whether to
override default parameters for the object.

In some embodiments, Program Neighborhood window
520 that may be displayed on the screen of either client node
102A, 102N after the Program Neighborhood application
has executed. The window 520 includes graphical icons.
Each icon represents an application program that is hosted
by one of the servers 106 A, 106B, and 106N on the network
104. Each represented application is available to the user of
the client node for execution. The user may select and launch
one of the applications using the mouse, or keyboard.

In another embodiment, the Program Neighborhood win-
dow 524 may be displayed on the screen of either client node
102A, 102N after the Program Neighborhood application
has executed. The window 524 includes graphical icons 526,
528. Each icon 526, 528 represents an application program
that is hosted by one of the servers 106A, 106B, and 106N
on the network 104. Each application program represented
by one of the icons is available to the user of the client node
102A, 102N for execution. The user may select and launch
one of the applications using the mouse or keyboard. For
web-based program neighborhood environments, the icons
are displayed within a browser window.

Each application program represented by one of the icons
is unavailable to the user of the client node 102A, 102N,
although such applications are present in the server farm.
The unavailability of these application programs can be
noted on the display screen (e.g., “X”s can be drawn through
the icons). An attempt to launch such an application program
can trigger a message indicating that the user is not autho-
rized to use the application.

The following is an example process by which a user of
either client node 102A, 102N may be informed about the
availability of applications hosted by application servers
106 A, 106B, and 106N on the network 104. In step 680, the
client node 102A,102N requests log-on service from one of
the servers, e.g., server 106B. The server 106B requires
valid user credentials to establish the connection. The server
106B receives the user credentials from the client node
102A and authenticates the user for log-on A desktop is
displayed at the client node 102A, 102N. The desktop can
include a graphical icon representing the Program Neigh-
borhood application program.

The application server 106 A establishes a connection with
each other servers 106B and 106N to exchange application-
related information, as described above, corresponding to
application programs hosted on those servers The applica-
tion server 106B develops and maintains a database of the
collected application-related information. Each other server
106 A and 106N in the server farm may develop a database
equivalent to the database of the server 106B and in similar
manner as the server 106C. In another embodiment, the
database of the server 106B may be a centralized database
that is accessible to each other application server 106A and
106N in the server farm. The collecting of application-
related information may occur independently or be triggered
by the request of the client node 102A, 102N to log-on to the
server farm 38.

The client node 102A, 102N may request execution of an
application program from the desktop display. The master
server node may process the request and, using a load-
balancing evaluation and application availability as
described above, determine the application server to provide

US 9,461,996 B2

103

the service to the client node 102A, 102N (step 694). For
example, the application server 106 A may be selected to
service the request with the client node 102A, 102N. In step
696, the client node 102A, 102N establishes a communica-
tions link with the server 106B. The server 106B and the
client node 102A, 102N may communicate according to the
ICA protocol appropriate for that client node as described
above.

Also in response to this request to run the application
program, the master server node 106A or the server 106B
may run the Program Neighborhood application and push
the results to the client node 102 A, 102N, although the client
node 102A, 102N may not have requested the Program
Neighborhood application program. When executing the
Program Neighborhood application program, the master
server node 106A or server 106B filters the application-
related information in the database using the user creden-
tials. The result of filtering the database determines those
application programs that are authorized for use by the user
of the client node 102A, 102B. The authorized application
programs are in the program neighborhood of the client node
102A, 102N. This program neighborhood of available appli-
cation information is pushed to the client node 102A, 102N
and displayed on the client screen in a Program Neighbor-
hood graphical window

In other embodiments, the Program Neighborhood win-
dow may include applications that are in the server farm but
unavailable for use to the client node 102A, 102N. In a
Windows-based implementation, the available (and unavail-
able) application programs can be represented by icons. The
user of the client node 102A, 102N may select and launch
one or more of the application programs displayed in the
Program Neighborhood window.

K. Systems and Methods for Providing Single Sign On
Access via an Intermediary Device to Disparately Hosted
Application

Referring now to FIGS. 23A and 23B, embodiments of
the present solution are directed to challenges in providing
a single authentication domain across disparately hosted
applications. Using a third party cloud access system such as
embodiments of the cloud access system comprising a
Single Sign On system provided by Apere Inc of San Jose,
Calif., such a solution may require or use a DNS based work
around or integration to integrate with the cloud access
system with a third-party hosted application, such as a SaaS
application. By way of example, in some embodiments, a
user without embodiments of the ADC of the present solu-
tion may perform the following steps to access a SaaS
application via a cloud access system directly.

Step 1 (Cloud Access System authenticates the user):

User logins to Cloud Access System

Kerberos key tab is generated in Cloud Access System
and the Kerberos ticket of user is validated by an
identity managed access gateway (IMAG).

Proxy servers may be setup to redirect specific URLS
to IMAG

Example: login.salesfore.com/mail.google.com/ . . .
may be redirected to http://imag.apere.com/web-
ssouser/websso.do?action=authenticateUser&
applicatio=salesforce (imag.apere.com is IMAG
DNS Name)

IMAG using the browser checks to see if the user is
already logged into Cloud Access System (Kerberos
on http) using negotiated protocol.

IMAG decrypts the user Kerberos ticket using keytab
file and knows who the network user is.

10

15

20

25

30

35

40

45

50

55

o
o

104
Step 2 (Cloud Access System does SSO to the backend
SaaS application)
Depending on the application, if the application session
is maintained by cookies, then IMAG will redirect

the browser with new URL “http:/
n6.salesforce.com/webssouser/websso.do?action=
performSSO”

Using IMAG-database, network user to application
mapping is found and IMAG does the sign on to the
SaaS application

Step 3 (Final redirect to the SaaS application)

IMAG redirects the browser to post login URL of SaaS
application with application related cookies got on
doing sign-on to application.

Example: redirect URL: “http://n6.salesforce.com/”
application cookies may be set with domain name as
“salesforce.com” so the these cookies can be sub-
mitted to Salesforce upon redirection.

The user gets the Post login user-session to SaaS
application (the cookies submitted in above step
ensures the application session information is sent
back to Salesforce)

In view of the above embodiments, the integration includes
using a prefix that maps back to the cloud access system
used in the redirect (e.g. (sso.imag.salesforce.com DNS
points to IMAG IPAddress).

In some embodiments, a system with the ADC of the
present solution may perform the above steps to access a
SaaS application without using the DNS integration or
workaround while leveraging the acceleration, policy man-
agement and other features of the embodiments of the
appliance 200 described herein. Instead the fully qualified
domain name (FQDN) of the SaaS application may be sued.
In an example embodiment of using the ADC as an inter-
mediary between the client device of the user, the cloud
access/SSO system and the SaaS application, the following
steps may be performed.

Step 1: Cloud Access System authenticates the user.

The ADC may configure a responder to redirect the
user’s access request and/or authentication to the
cloud access system In some embodiments, the
responder and content redirector (CR) modules/con-
figuration of the ADC co-exist. Requests for the
initial login page may bypass CR and responder
sends the appropriate redirect. Cloud Access System
Redirect. The cloud access system does a redirect to
the domain of the hosted application, such as the
SaaS domain, so that the cloud access system can set
cookies for that domain after SSO.

Step 2: Cloud Access System redirects to the SaaS to set

cookies for the SaaS domain after SSO.

The cloud access system re-directs to the fully qualified
domain name that it would in Step 3. This is properly
resolved. The transparent CR on NS then intercepts
this request. The CR is configured such that this
request for SSO (the URL will have keywords—in
this case webssouser/
websso.do?action=performSSO) is redirected to the
cloud access system.

The ADC may have configure CR policies such that
only SSO requests are sent to cloud access system. In
this embodiment, the DNS hack of using a prefix that
maps back to the cloud access system used in the
redirect is not required (.e.g. (sso.imag.salesforce-
.com DNS points to IMAG [PAddress)

Step 3 (Final redirect to the SaaS application)

The cloud access system again redirects to the SaaS
domain. This request will bypass the ADC’s CR

US 9,461,996 B2

105

since the request does not have the SSO URL and the
ADC direct the request to the backend SaaS appli-
cation.

Referring now to FIG. 23A an embodiment of the system
for providing the solution described above is depicted. In
brief overview, an intermediary device, such as embodi-
ments of appliance 200 may be intermediary to a client and
a plurality of servers. The system may include a cloud
access/Single Sign On system 2325 for providing single sign
on services for a plurality of disparately hosted applications
2305, including but not limited to SasS/PaaS/laaS hosted
applications 2310, enterprise hosted applications and enter-
prise applications hosted via cloud computing service pro-
vider. The cloud access/Single Sign On (SSO) system 2325
may provide single sign on services for any one or more 3¢
party hosted applications 2305, such as SaaS applications.
The intermediary may include a responder 2315 for gener-
ating redirection responses to client requests, such as client
requests to access a 3" party hosted application. The inter-
mediary may also include a CR vServer 600' for performing
content redirection for predetermined client requests
directed to the 3’7 party hosted applications to redirect to
cloud access system 2325.

In some embodiments, the intermediary device 200 is
deployed in the path between the client 102 and server 106.
In some embodiments, the intermediary device 200 is
deployed in the path between the client 102 and disparately
hosted applications 2305, such as a 3"/ party hosted appli-
cation 2310. The intermediary device may receive and/or
intercept any request of the client traversing network 104. In
some embodiments, the SSO/cloud access system is
deployed in parallel to the intermediary device. The inter-
mediary device 200 may use any embodiments of the
transparent cache redirection techniques described in con-
junction with FIGS. 6A-6B and 7A-7B. Using these tech-
niques, the intermediary device may forward requests and
receive responses from the parallel deployed cloud access/
SSO system 2325 transparently as if the intermediary device
was the client 102.

Disparately hosted applications may include any type and
form of applications executed at, served by, operated at or
hosted on differently owned systems, devices and networks.
Disparately hosted applications may include an application
on the enterprise of the user (e.g., on premise applications),
applications of the enterprise hosted on a cloud computing
service provider and/or SaaS/PaaS/laaS applications. For
example, an enterprise deploying the intermediary 200 or
client 102 may own or operate on-premise servers, such as
a data center. The enterprise owned servers may execute or
provide applications for the user of the enterprise. The same
enterprise may host, operate or run some applications on a
cloud computing or hosting service provider. These appli-
cations are operated on, served by or hosted by servers
and/or networks different from the enterprise. The users of
the enterprise may use applications provided by or hosted by
3¢ parties 2310, such as a SaaS application, for example,
salesforce.com, Google mail, etc.

Disparately hosted applications may include applications
delivered via application delivery system 190 described
herein (e.g., in connection with FIG. 1D) including but not
limited to applications communicated via a remote display
protocol, such as ICA or RDP, applications streamed from
server and applications delivered via a virtualized environ-
ments, such as via a virtual machine. The disparately hosted
applications may include any applications delivered via the
application delivery system 190 in combinations with any

10

15

20

25

30

35

40

45

50

55

60

65

106

third party hosted applications and/or applications of the
enterprise hosted or served via a cloud computing or hosting
service.

The 3" party hosted application 2310 may include any
type and form of SaaS, PaaS and/or IaaS application. These
applications 2310 may be accessed via the Internet or
network 104 by the client 102. The 3’7 party hosted appli-
cation 2310 may include any type and form of web based
application provided via servers and networks owned and/or
operated by an entity different from the enterprise, such as
the enterprise deploying the intermediary device 200 and
client 102.

The cloud access system 2325 may include any server,
system, application, service, appliance or devices that pro-
vide SSO authentication services to a plurality of disparately
hosted applications. The cloud access system may include
any system that provides a single authentication domain
(e.g., one set of authentication credentials of a user) to
authenticate a user and then login and provide access to the
user to various third-party hosted applications, such as a
SaaS applications, web hosted applications, cloud hosted
applications. The cloud access system may include any
system that provides a single sign on process to disparately
hosted applications, such as application on the enterprise of
the user (e.g., on premise applications), applications of the
enterprise hosted on a cloud computing service provider
and/or SaaS/PaaS/TaaS applications.

In some embodiments, the cloud access system includes
any embodiments of the appliance, software and/or services
manufactured by Apere Inc. of San Jose, Calif. In some
embodiments, the cloud access system includes any embodi-
ments of the appliance, software and/or services manufac-
tured by Symplified Inc. of Boulder, Colo. In some embodi-
ments, the cloud access system includes any embodiments
of the appliance, software and/or services manufactured by
Nordic Edge of Sweden. The cloud access systems may
perform various types of redirects to redirect client requests
to 3" party hosted applications.

The intermediary 200 may include a responder 2315. The
responder may comprise any type and form of executable
instructions executable on the appliance 200. The responder
may be included in or be part of a packet processing engine.
The responder may be included in or be part of a virtual
server. The responder may be a module, application, pro-
gram, service, process, task or thread the communicated
with the packet processing engine and/or virtual server.

The responder comprises logic, functions or operations to
provide a content filter that can generate responses from the
system to the client. The responder may be used to generate
responses to requests or communications from the client,
such as to generate redirect responses, user-defined
responses, and resets. In some embodiments, the responder
deals with the request side of the system. The responder may
be one of the first modules on the system to process requests
from the client. The responder may configured to use custom
responses for various types of requests.

The responder may operate responsive to one or more
responder policies. The responder policies may instruct,
identify, configure or specify to the responder to look for
certain types of data in a client request and perform actions
according to rules specified by a user. If a request matches
a configured responder policy, the action corresponding to
the policy generates the response and sends the response to
the client. The response may contain some pieces of the
request. For example, when generating a redirect response,
the responder may include the incoming URL in the gener-
ated response.

US 9,461,996 B2

107

In some embodiments, a responder policy may be con-
figured to identify any URL corresponding to a disparately
hosted application, such as a 3"/ party hosted application
provided by a SaaS. In some embodiments, the responder
policy may be configured to identify a login page of a 3’7
party hosted application. In some embodiments, the
responder policy may be configured to identify a domain
name, such as a FQDN of a 3™ party hosted application. The
responder policy may be configured to perform an action of
generating a response that redirects the client to the cloud
access/SSO system 2325. The responder policy may identify
one cloud access/SSO system of a plurality of cloud access/
SSO systems. The action may be performed according to a
rule that indicates if content of the client request matches the
content specified by the policy then generate a predeter-
mined response. The action may be performed according to
a rule that indicates if content of the client request does not
match the content specified by the policy then generate a
predetermined response.

The responder may support a plurality of actions. One
type of action is a Respondwith Action, which sends a
designated response without forwarding the request to a
server. Instead, the appliance substitutes for and acts as the
server itself. Another type of action is a Redirect Action,
which Redirects the request to a different Web page or Web
server. For example, a Redirect action can redirect requests
originally sent to a Web site that exists in DNS, but for which
there is no actual Web server, to an actual Web site. The
responder can also redirect search requests to an appropriate
URL. The generated or designated response may be identi-
fied or specified by a target. In some embodiments, the target
is a configured string for the response such as an HTTP
string to be sent as a response, or URL to which the request
is redirected. The redirection target for a Redirect action may
consist of a complete URL. The responder may be config-
ured to perform a redirect action to redirect the client to
another server, system or URL. The redirect action of the
responder may be used to redirect the client if a request
meets certain conditions, before the request is sent to the
back-end server

The intermediary device may include any embodiments of
the cache redirection vServer 600', which may be generally
referred to as a content redirection or CR vServer, described
in connection with FIGS. 6A-6B and 7A-7B. For example,
although the techniques of FIGS. 6A, 6B, 7A and 7B may be
generally described in connection with transparent redirec-
tion to cache servers or farms, the same techniques may be
used for transparent redirection to a cloud access/SSO
system 2325.

When configured for transparent mode, a cache redirec-
tion of the appliance, such as an appliance deployed in an
edge deployment topology, the CR vServer sends traffic
matching a policy or expression to a transparent device or
server. Clients access the Internet through the appliance,
which may be configured as a Layer 4 switch that receives
traffic on a certain port, such as port 80. The application can
direct certain requests to one server or device in the trans-
parent sever or device farm, such as a parallel deployed
cloud access/SSO system and other requests to the origin
server of the server. Content switching policies may be used
to send certain requests of the client to the cloud access
system and forward other request on to the origin server,
such as a third party hosted application.

The CR vServer may be configured to redirect certain
requests from the client to the cloud access/SSO system. For
example, requests for a login page of a SaaS application may
be redirected to a transparent cloud access system. Requests

20

25

35

40

45

55

108

not matching a content switching policy may be forwarded
on to the origin server. When the appliance receives a
request that is directed to a web server, the appliance may
compares the HT'TP headers or HTTP content in the request
with a set of policy expressions. If the request does match
the policy, the appliance forwards the request to the cloud
access system. If the response does not match a policy, the
appliance forwards the request, unchanged, to the web
server.

The CR vServer may operate responsive to a set of policy
expressions or content switching policies. These policies
and expressions of such policies may be based on, identify
or used to direct the CD vServer to identify, inspect or
evaluate any portion of the request or response, including
any header and/or payload of any protocol or network layer
of the request and/or response. Responsive to the policy, the
CR vServer may redirect the request or response to a
designated server, service or URL, such as the cloud access
system, the client or a disparately hosted application.

In some embodiments, the appliance may include a
vServer 275S for managing or accessing the service of the
cloud access system 225. In some embodiments, the appli-
ance may include a vServer 275S for load balancing a
plurality of services for the cloud access system 225. In
some of these embodiments, the CR vServer may according
to policy direct certain client request to the cloud access
system via the vServer 275A. In some embodiments, the
appliance may include a vServer 275N for load balancing or
accessing servers 106, such as servers for hosted applica-
tions. In some of these embodiments, the CR vServer may
according to policy direct certain client request to the cloud
access system via the vServer 275N.

Referring now to FIG. 23B, embodiments of steps of a
method for providing single sign on access to disparately
hosted applications. At step 2355, the appliance intercepts a
client request to access a login page of one or more a
plurality of disparately hosted applications. At step 2360, the
responder of the appliance generates a response to redirect
the client to the cloud access/SSO system At step 2365. the
cloud access/SSO system redirects the client to the third
party hosted application. At step 2370, the appliances inter-
cepts the redirect to the third part hosted application and the
CR vServer directs the request to the cloud access/SSO
system. At step 2375, cloud access/SSO system does a
redirect again to the third party hosted application. At step
2380, the appliance intercepts the redirect and allows the
redirect to go to the third party hosted application bypassing
further redirection from the CR vServer.

At step 2355, a user of the enterprise may request, via a
client, access to any one of a plurality disparately hosted
application. The user may authenticate or sign on to the
appliance. The user may request access to any third party
hosted application, such as any SaaS, PaaS or laaS appli-
cation. The request may include a request to a login page of
a third party hosted application. The request may include a
request to a landing page of a third party hosted application.
The request may include a request to a URL of a third party
hosted application. The request may include a request to a
sign-in URL of a third party hosted application. The request
may include a request that identifies a domain name of the
third party hosted application. The request may include a
request that identifies a FQDN of the third party hosted
application. The request may include a request that identifies
a destination IP address and/or destination port of the third
party hosted application.

The appliance 200 may intercept or otherwise receive the
request as the request traverses the appliance intermediary to

US 9,461,996 B2

109

the client and the destination of the request. The user as part
of sending the request or prior to sending the request may
have authenticated to the appliance using a set of authenti-
cation credentials. These set of authentication credentials
may be recognized or authenticated by the appliance itself
and/or via an enterprise authentication service or server
accessible via the network of the appliance and enterprise.

At step 2360, the responder of the appliance detects or
identifies the request as a request to access a predetermined
third party hosted application. The responder may determine
that a portion of the request matches or corresponds to a
responder policy. The responder may determine that a por-
tion of the request matches or corresponds to a redirect
action of a responder. The responder may determine that the
request matches or correspond to a responder policy for
identifying a predetermined third party hosted application.
The responder may determine that the request matches or
correspond to a responder policy of a plurality of responder
policies. Each of the responder policies may identify a
corresponding third party hosted application

The responder generates a response to redirect the client
to a predetermined target, such as the cloud access system
2325, identified or specified by the matching responder
policy. The responder generates a response to redirect the
client to a URL of the cloud access system. The responder
generates a response to redirect the client to a domain name
of the cloud access system. The responder generates a
response to redirect the client to an IP address of the cloud
access system. The responder generates a response to redi-
rect the client to authenticate to the cloud access system. The
appliance transmits the response to the client. The appliance
serves the response to a browser of the client. The browser
of the client may interpret, process or execute the response
to perform the redirection.

At step 2365, the cloud access/SSO system processes the
redirected request from the client or browser. The cloud
access/SSO system may perform any of the functionality,
operations or services provided by the cloud access/SSO
system for a user. In some embodiments, the user authenti-
cates to the cloud access system. In some embodiments, as
the user is authenticated to the appliance with one set of
authentication credentials, the user does not need to re-
authenticate to the cloud access/SSO system. The appliance
and cloud access/SSO system may communicate about the
status of authentication of the user. In some embodiments,
the appliance authenticates the user to the cloud access
system seamlessly and/or transparently to the user. For
example, the appliance may comprise a form filling module
that identifies, parses and fills in the login form to the cloud
access system with the requested user identification and/or
authentication credentials.

Upon authentication, confirming authentication or other
processing of or for the user by the cloud access system, the
cloud access system may redirect the client to a domain
name of the third party hosted application. In some embodi-
ments, the cloud access system may redirect the client to the
fully qualified domain name of the third party hosted appli-
cation. As such, in some embodiments, the cloud access
system does not need to use any DNS hacking or other DNS
mapping for integrating with the third party hosted applica-
tion. If the third party hosted application uses cookies to
maintain the application session of the user, the cloud access
system may direct the browser of the client to the third party
hosted application to set the cookies for the session. The
cloud access system may redirect the client to a URL of the
third party hosted application. The URL may start with the
FQDN of the third party hosted application. The cloud

10

15

20

25

30

35

40

45

50

55

60

65

110

access system may redirect the client to a SSO URL of the
third party hosted application. The cloud access system may
redirect the client to a login URL of the third party hosted
application. Responsive to the redirection request, response
or communication from the cloud access system, the
browser of the client posts, requests or redirects to the
specified URL or FQDN.

At step 2370, the appliance intercepts or otherwise
receives the client’s redirection request to the third party
hosted application. The CR vServer may identify or match
the client’s redirection request to a policy, such as a content
switching policy. The CR vServer may match the client’s
redirection request to a content switching policy comprising
one or more keywords matching portions of the redirect
URL. The CR vServer may have a plurality of content
switching policies. Each of the content switching policies
may have expressions identified or specifying a portion of
the redirection URL from the cloud access system corre-
sponding to a predetermined third party hosted application.
The CR vServer may match the client’s redirection request
to a content switching policy comprising an expression
matching the SSO URL from the cloud access system for
redirection to the third party hosted application. The CR
vServer may match the client’s redirection request to a
content switching policy comprising an expression matching
the FQDN of the third party hosted application. Responsive
to matching a content switching policy, the CR vServer
forwards, transmits or redirects the redirection request to the
cloud access system. In some embodiments, the CR vServer
forwards or communicates the redirection request to a
second vServer managing or providing access to the service
of the cloud access system.

At step 2375, the cloud assess system may perform SSO
login for the user. The cloud access/SSO system may use an
application connector designed and constructed to interface,
communicate and/or otherwise login and/or authenticate the
user to the third party hosted application, such as via a secure
login. The cloud access/SSO system may perform authen-
tication/SSO services, or portions thereof, for the third party
hosted application. The cloud access/SSO system may per-
form authentication and automatic login/sign on to the third
party hosted application on behalf of the user. The cloud
access/SSO system may perform authentication and/or auto-
matic login/sign on to the third party hosted application on
transparently and seamlessly for the requesting user. The
cloud access/SSO system may perform authentication/SSO
services, or portions thereof, for the user without requiring
the user to re-authenticate.

The cloud access/SSO system may use a second or
different set of authentication credentials recognized or to be
authenticated by the third party hosted application. The
cloud access/SSO system may be configured by the user or
administrator with a set of authentication credentials for
each third party hosted application. Each set of authentica-
tion credentials may be recognized or useable only with a
corresponding application. In some embodiments, some of
the authentication credentials across two or more applica-
tions are different while in some embodiments, some of the
authentication credentials across two or more applications
are the same.

The cloud access system may again redirect the client to
the third party hosted application, such as the FQDN of the
third party hosted application. The cloud access system may
redirect the browser to a post login URL of third party hosted
application with application related cookies received in
doing sign-on by the cloud access system to the third party
hosted application. For example, the cloud access system

US 9,461,996 B2

111

may redirect to the FQDN of the third party hosted appli-
cation with that the application cookies are set with the
domain names as the FQDN. This will allow these cookies
to be submitted to the third party hosted application upon
redirection.

At step 2380, the appliance intercepts or otherwise
receives the redirection of step 2375. In this case, the CR
vServer may not have any content switching policies that
match the URL of the redirection or the URL of the request
from the redirection. At this step, the responder and CR
vServer policies are designed to have this redirection bypass
the responder and CR vServer so that the appliance forwards
to the third-party hosted application without redirecting. In
some embodiments, as no policies are configured for the
responder and/or CR vServer to process the redirection, the
request of the redirection is forwarded to the intended or
original destination of the request (e.g., the third party
hosted application server). In some embodiments, the CR
vServer is configured to respond to a policy to match this
redirection and bypass redirection or allow to continue to the
destination of the third party hosted application.

In view of the systems and methods of the embodiments
of'the above solution, the ADC or appliance described herein
provides a transparent and seamless deployment of a cloud
access system. The cloud access system may be transpar-
ently deployed in a parallel configuration to the appliance
and the appliance manage redirections at appropriate times
to seamlessly and transparently use the services of the cloud
access system. Furthermore, the enterprise and the cloud
access system do not need to have a DNS integration
solution with special lookups to facilitate the use of the
cloud access system. Instead, the easily configured ADC
may be used to have a policy driven and user configured
approach to providing an integrated SSO solution to a
plurality of disparately hosted application. Furthermore, the
solution provides the acceleration, control and traffic man-
agement benefits of the appliance described herein for
application network traffic after SSO process is completed.
L. Systems and Methods for Single Click Access to SaaS,
Cloud Hosted and Enterprise Applications

Embodiments of the systems and methods of the present
solution are directed to providing a single access interface to
a plurality of disparately hosted applications, such as Soft-
ware As A Service, Platform As A Service (PaaS) hosted
applications, Infrastructure As A Service (IaaS) applications,
cloud hosted applications and enterprise hosted applications.
Any embodiments of the application delivery controller
(ADC), e.g., appliance 200 or packet engine, may provide a
user interface for a remote user to gain access to any one or
more of the plurality of differently hosted applications by
clicking on a visual representation of the application in a list
of published applications for which the user is allowed to
access. Via the same remote access user interface, a user
may access an application hosted outside the enterprise the
same way the user may gain access to a data center or
enterprise hosted application. Transparent and seamless to
the user, ADC provides access to the disparately hosted
systems via a single click user interface upon which the user
can launch any one of a SaaS, Cloud or enterprise applica-
tion.

Any of the embodiments and components of the systems,
or portions thereof, described in conjunction with FIG.
12A-FIG. 21 may execute, be configured on or incorporated
in any of the embodiments of an ADC 200. In some
embodiments, a core of a multi-core ADC provides any of
the web interface and published applications functionality
described herein. In some embodiments, a virtualized ADC

20

40

45

60

112

provides any of the web interface and published applications
functionality described herein. In some embodiments, any of
the embodiments of the program neighborhood subsystem
1270, ICA browser subsystem 1260, network-side interface
102 and farm-management interface 1204 may execute on
any processor, core or virtualized environment of any
embodiment of the ADC. In some embodiments, any of the
embodiments of the web services directory 1160, web pub-
lishing tool 1173, publishing plug-in 1165 may execute on
any processor, core or virtualized environment of any
embodiment of the ADC. In some embodiments, any of the
embodiments of the management dashboard 1800, profile
connection manager 1810 and application folder 1804 may
execute on any processor, core or virtualized environment of
any embodiment of the ADC.

Any of the embodiments and components of the systems,
or portions thereof, described in Section H above may
execute, be configured on or incorporated in any of the
embodiments of an ADC 200. In some embodiments, the
ADC may be designed and constructed to perform any of the
operations of the server side functionality for providing a
program neighborhood, published application and/or web
interface to applications described herein. Any vServer or
packet engine of the ADC may be designed, configured and
constructed to communicate, interface to or work with a
SaaS/PaaS/laaS service or any of the servers providing such
service. Any vServer or packet engine of the ADC may be
designed, configured and constructed to communicate, inter-
face to or work with a cloud hosting service or any of the
servers providing such service. Any of the servers providing
applications or access to applications described in Section H
above and/or Section G above may be servers of any cloud
hosting service or SaaS/PaaS/laaS service providers.

Embodiments of the present solution provide a list of
applications accessible by the user via a program neighbor-
hood and/or web interface that includes in the list of the
applications, not only enterprise applications in the data
center, but also any combination of SaaS/laaS/PaaS appli-
cations and/or cloud hosted applications external to the data
center. Any of the of SaaS/laaS/PaaS applications and/or
cloud hosted applications may be identified, configured,
published, controlled and managed like the applications
described in connection with Section G and H above.

In connection with the embodiments of prior sections, a
user may be subscribed to any combination of SaaS/laaS/
PaaS applications and/or cloud hosted applications as well
as the enterprise applications hosted by the enterprise in its
data center. The embodiments of the application delivery
store manager, application delivery store interface and man-
agement dashboard may be used for applications 1802 that
are SaaS/laaS/PaaS applications and/or cloud hosted appli-
cations or any application hosted externally to the data
center of the enterprise.

The enumerated list of applications on the screen of the
web interface and/or program neighborhood may include
any combination of enterprise applications of the data cen-
ter, SaaS, laaS or PaaS application and cloud hosted appli-
cations. Any icons of the screen of the web interface and/or
program neighborhood may identify or represent a SaaS,
IaaS or PaaS application. Any icons of the screen of the web
interface and/or program neighborhood may identify or
represent a cloud hosted application.

With the embodiments of the present solution described
herein, the present solution provides a centralized, consoli-
dated user interface and remote access system to a plurality
of disparately hosted applications. The user can sign on and

US 9,461,996 B2

113

gain access to any of the user’s SaaS/PaaS/laaS or cloud
hosted applications as the user may for any enterprise hosted
application.

The systems and methods described herein provide a
seamless and transparent application delivery system to
deliver to the user any application from a plurality of
disparately hosted applications. The web interface and/or
program neighborhood provided by or via the ADC and/or
application delivery system may enumerate for the user any
combination of SaaS/IaaS/PaaS, cloud and enterprise appli-
cations. The web interface and/or program neighborhood
provided by or via the ADC and/or application delivery
system may enumerate those applications to which the user
is authorized for access. The user may gain access via
clicking on an icon or link of a list of applications that user
is subscribed to or to which are published for the user by the
application delivery system. The ADC and application deliv-
ery system provide access control, management and launch
services to the user via the consolidated and centralized user
interface for any combination of SaaS/IaaS/PaaS, cloud and
enterprise applications.

With the embodiments of single sign on described herein,
the ADC and/or application delivery system provide a
combination of SSO services and application publication,
subscription and launch services for any combination of
SaaS/laaS/PaaS, cloud and enterprise applications.

Referring now to FIG. 24A, an embodiment of a system
for serving disparately hosted applications to a client via an
intermediary 200 is illustrated. In brief overview, a client
102 may comprise a client agent 120 that provides to a user
an interface 2400, such as a browser based interface, an
application delivery store, a program neighborhood or a web
interface of published application. The user may, via the
interface 2400, access any number of disparately hosted
applications 2305 A through 2305N from servers 106. Client
102 may provide the user with a separate or a different
instance or kind of an interface 2400, such as web interface
2400'. Web interface 2400' may comprise any one of a web
portal or a dazzle interface, a program neighborhood inter-
face, or an interface for the application delivery store.
Interfaces 2400 and 2400' may include a consolidated list of
applications available to the user along with application
icons, each of which may correspond to a specific dispa-
rately hosted application 2305. In such instances, web
interface 2400' or 2400 may include specific icons corre-
sponding to specific applications for each of applications
2305A, 2305B through 2305N executing on servers 106A,
106B through 106N.

Further in view of FIG. 24A, client 102 may be connected
to intermediary 200 via network 104. Packet engine 548 of
the intermediary 200 may comprise application configura-
tion 2410 and user credentials 2415. Intermediary 200 may
also include application connector 2420 which may execute
within the packet engine or any where on the intermediary
device 200. Intermediary device 200 may connect to any of
the servers 106A, 106B through 106N via any number of
networks, such as networks 104' and 104". The networks
104' and 104" may be a world wide web, private networks
of a third party enterprise, networks of the host enterprise of
the intermediary 200, a cloud computing network environ-
ment, a virtual network or any other network discussed
herein. Servers 106 through 106N may host any number of
disparate applications 2305A through 2305N in any order
and in accordance with any embodiments discussed herein.
Enterprise server 106 A may be a server of the host enterprise
that hosts, owns or manages the intermediary 200. Disparate
application 2305A may be an application of the host enter-

5

10

15

20

25

30

35

40

45

50

55

60

65

114

prise made available to the client 102 accessing the inter-
mediary 200 of the enterprise from the host enterprise server
106A. Server 106B may be a third party server of a third
party enterprise that is different then the host enterprise. The
third party server 106B may execute a cloud computing
service 2430 serving or hosting a disparate application
2305B of the host enterprise. Another third party server
106N of a third party enterprise may host or serve a third
party disparate application, such as 2305N also referred to as
application 2310. The third party application 2305N or 2310
may be an application that the host enterprise does not serve
or control. The intermediary 200 may allow the client 102 to
use any of the disparate applications 2305 described herein.
Intermediary 200 may deliver these applications 2305 to the
user via any techniques described herein, including the
application delivery via ICA protocol, streaming techniques
or via a virtual environment delivered to the client machine
102.

Interface 2400 may be any interface enabling a user to
access to disparately hosted applications 2305. Interface
2340 may be any interface described herein, such as a web
interface or a web portal/dazzle interface, a program neigh-
borhood interface or an application delivery store interface.
Interface 2400 may include any features or functionalities of
any of the aforementioned interfaces or components. Inter-
face 2400 may also comprise an interface executed through
the client agent 102. Interface 2400, whether a client agent
interface 2400 or a web interface 2400, may herein be
referred to as interface 2400 and may comprise any func-
tionality of an interface providing access to any number of
disparately hosted applications 2305/2310. Interface 2400
may be a web interface implemented via a client’s web
browser, and may be termed interface 2400' or web interface
2400'. Interface 2400 may also include an interface imple-
mented via a client agent 120 executing on the client 102.
Client agent 102 executed interface 2400 and web interface
2400' may each provide the same functionality to the user
and enable the user to access any and all applications to
which the user has access.

Interface 2400 may comprise a list of applications avail-
able to the user and icons corresponding to any such
applications. The icons may include graphical icons or links.
Icons may comprise a hyperlink, a word, a phrase, a picture,
a figure, a symbol or any other feature that may be associated
with a specific disparately hosted application. Interface 2400
may comprise a list of applications formed in a list format,
or a table format or simply displayed as icons of applications
in a standard computer window, file or a folder.

Disparately hosted applications 2305, or third party appli-
cations 2310, in addition to the aforementioned embodi-
ments and features, may also include any type and form of
applications hosted by servers from any number of enter-
prises and networks. Disparately hosted applications 2305 or
2310, also referred to as disparate applications 2305/2310 or
applications 2305/2310, may executing on the host enter-
prise within which the user is operating and which provides
the intermediary 200. Applications of the host enterprise
may be termed as premise applications. Application 2305
may also include applications of the host enterprise hosted
on a cloud computing service provider and/or SaaS/PaaS/
IaaS applications. For example, an enterprise deploying the
intermediary 200 or client 102 may own or operate on-
premise servers, such as a data center. The enterprise owned
servers may execute or provide applications for the user of
the enterprise. The same enterprise may host, operate or run
some applications on a cloud computing or hosting service
provider. These applications 2305 may be operated on,

US 9,461,996 B2

115

served by or hosted by servers and/or networks different
from the enterprise, such as a third party enterprise. The
users of the enterprise may use applications provided by or
hosted by 3"/ parties 1210, such as a SaaS application, for
example, salesforce.com, Google mail, etc. Third party
applications 2305 may include any applications, such as a
video game, an email such as a Yahoo mail, Facebook
application, a streaming application for movies, such as
Netflix application or any other application which may be
accessed by a user and may be hosted by a remote server.

Applications 2305 may comprise any type and form of
application or service that may be served via a network.
Application 2305 may comprise an application, such as a
web based, HTML based application, java based or
javascript based application. Application 2305 may be a
video game, an application video game or an online video
game. Application 2305 may be a streaming application, a
word processing application, a data processing application.
Application 2305 may comprise a database, file services,
email or any other service or application served over a
network.

Application configuration 2410 may comprise any type
and form of configuration for an application 2305. Appli-
cation configuration 2410 may include configurations for
enabling the user on client 102 to access the applications
2305 to which the user has access. Application configura-
tions 2410 may comprise settings and commands to initiate,
operate and manage any applications 2305. Configurations
2410 may comprise settings for environments for running
applications 2305, information regarding user connections
for the applications or any features for enabling operation of
applications 2305 the user selects and initiates.

User credentials 2415 may comprise any user credential
or user specific information for gaining access to applica-
tions 2305. User credentials 2415 may comprise usernames,
passwords, cookies, authentication files, encryption or
decryption keys or any user specific information that may be
used by any application 2305 for gaining access to the
application 2305. Credentials 2415 may comprise username
and password of a user to access intermediary 200 or to
access the network via intermediary 200. User credentials
2415 may comprise a username and a password of a user for
accessing network 104, such as a LAN network of the host
enterprise. User credentials 2415 may comprise credentials
for accessing any host enterprise applications 2305 on any
host enterprise server, such as disparate application 2415A
of the host enterprise executing on host enterprise server
106A. User credentials 2415 may comprise credentials, such
as username and password of a third party application
2305N which may be different from the username and
credentials for accessing host enterprise network or inter-
mediary device 200. Username credentials 2415 may com-
prise any username, password, user specific information or
feature that is needed for access to any application 2305, any
enterprise, such as the host enterprise or a third party
enterprise, a local network 104 or a remote LAN 104' or a
third party enterprise network 104".

Application connector 2420 may comprise any hardware,
software or a combination of hardware and software for
signing in or authenticating a user to an application 2305.
Application connector 2420 may comprise logic, functions
or operations to establish a connection, session or use the
services, for or on behalf of an user, of any application 2305.
Application connector 2420 may comprise functionality for
maintaining an environment via which the user may interact
with the application 2305, maintaining a connection or
session between the user on the client 102 and a server 106

10

15

20

25

30

35

40

45

50

55

60

65

116

hosting the application 2305 or any setting for ensuring that
the connection or the session between the user and the
application 2305 is established and/or maintained.

Enterprise server 106 may be a server of a host enterprise
which also provides the intermediary 200 and the local area
network 104 via which the client 102 connects to the
intermediary 200. The host enterprise 106 A may be a server
inside of a LAN 104 or at a remote host enterprise location
or inside of a host enterprise network. In some embodi-
ments, server 106A is deployed outside of the host enterprise
network. Server 106 A may host any number of applications
2305, such as the host enterprise application 2305A. How-
ever, in some embodiments, host enterprise server 106 A may
host third party applications 2305, such as application
2305N.

Third party server 106B may be a server outside of the
host enterprise network. Third party server 106B may com-
prise cloud computing service 2430 for serving applications
2305 via the cloud computing technology. Third party server
106B may comprise a host enterprise application, such as
application 2305A or 2305B. Despite the fact that the third
party server 106B may be a third party enterprise server, the
application 2305 hosted by this server may be a host
enterprise application 2305. Server 106B may provide
access to the locally hosted enterprise application 2305 to
the user via intermediary 200.

In some instances, a third party server, such as server
106N may comprise a third party application 2305N, also
referred to as application 2310 and comprising any func-
tionality of aforementioned application 2310. The third
party server 106 may be a server 106 of a third party
enterprise and may operate on a third party network 104",
different from the host enterprise network 104. Third party
application 2305N may be an application not owned, served
or operated by any of the servers 106 of the host enterprise.

Cloud computing service 2430 may be any service for
serving or hosting an application using cloud technology
providing computational resources on demand via a com-
puter network. Cloud computing service 2430 may comprise
a platform or a functionality for servicing, serving or pro-
viding any application 2305, any database, any file service
or email that may be served to a user. Cloud computing
service 2430 may be distributed to serve a single application
from a plurality of servers 106. In such instances, interme-
diary device 200 may be in communication with each of the
servers 106 to provide the application 106 to the user.

Referring now to FIG. 24B, an embodiment of a method
for providing a user a selectable list of disparately hosted
applications is depicted. In brief overview, at step 2450 an
intermediary device or any other authenticating device of the
host enterprise authenticates a user based on user credentials
for applications available to the user. At step 2455, the
intermediary device of the host enterprise receives a user
request to access a list of published applications available
for access to the user. At step 2460, the intermediary device
communicates to the user an interface that includes a list of
applications available to the user, the list comprising appli-
cations hosted by the host enterprise servers as well as
applications hosted on third party servers and servers of the
third party enterprises. At step 2465, the intermediary
receives a user selection of a disparately hosted application
via a single click on the interface comprising the list of
applications. At step 2470, the intermediary communicates
or causes the communication or delivery of the user selected
application to the user on the client device.

At step 2450, the user is authenticated based on any
credentials identifying the user. The user may be authenti-

US 9,461,996 B2

117

cated by the intermediary device 200, an authentication
server or any other device on the network for authenticating
users. The user may be authenticated based on any single set
of user credentials corresponding to the user. The interme-
diary device 200 may automatically authenticate the user on
all other applications available to the user, including the
third party disparately hosted applications, based on the
authentication on the initial authentication. In some embodi-
ments, the user is authenticated in accordance with the
techniques described in connection with the method illus-
trated in FIG. 23. The user may be authenticated using a
username and password, an encryption or decryption key, a
cookie or any other user identifying method. In some
embodiments, the user submits to the authenticating device,
such as the intermediary 200, a username and password that
is host enterprise specific, intermediary device 200 specific,
local area network specific or specific to any application or
service described herein, including the third party dispa-
rately hosted applications. In some embodiments, the user
submits a username and password to the intermediary device
200 and the intermediary device 200 authenticates the user
for access to the network of the host enterprise. In further
embodiments, the user may submit only a username and
password for the intermediary device and the intermediary
device may authenticate the user on each of the networks,
services, applications or enterprises that are external from
the host enterprise applications, services or networks. Inter-
mediary device may authenticate the user based on the
username and password received and may use the user’s
stored username and password to authenticate the user on
various third party hosted applications, such as the Google
mail, Yahoo email, Facebook, or any other service or appli-
cation that may be hosted externally by a third party server
or a third party enterprise.

At step 2455, the intermediary device 200 receives a user
request to access a list of published applications available
for access by the user. The request may be initiated by a click
on a desktop icon, a click on an interface icon, an HTML
request, or a request for a hyperlink. The request may be
initiated by the browser being directed to a predetermined
URL, such as a URL for accessing the intermediary device
or obtaining the list of published application. The request
may also be automatically generated by the intermediary
device in response to a received user’s username and pass-
word from the client. The user may simply log in to the host
enterprise network by logging in to the intermediary device
200 and the intermediary device may initiate the request for
automatically presenting the user with the list of applications
available to the user. The request may be initiated directly by
the user’s click or the user’s request, responsive to an event,
such as a detected user’s activity on the client 102 or based
on a rule or policy upon the user’s log in.

At step 2460, the intermediary device 200 communicates
to the user an interface comprising the list of all applications
available to the access by the user. The interface commu-
nicated to the user may be any interface 2400 described
herein. In some embodiments, the interface communicated
to the user is web interface In other embodiments, the
interface comprises a program neighborhood interface. In
further embodiments, the interface includes an interface for
an application delivery store. The interface may comprise
graphical icons, links or hyperlinks identifying features for
accessing applications 2305/2310. The interface may
include graphical representations of applications, descrip-
tions of the applications, and may be organized in any way
to enable the user to identify the applications 2305/2310.

5

10

15

20

25

30

35

40

45

50

55

60

65

118

The graphical icons of the interface may correspond or be
linked to the applications listed.

The applications available to the user may be organized in
a list, form or a table, any of which may be termed a list of
published applications. The list of published applications
may include any applications that are hosted on the servers
of the host enterprise, on third party servers as well as the
servers of any third party enterprises. The list of published
applications may correspond to any disparately hosted appli-
cations 2305 or 2310 described herein. The list of applica-
tions available for access to the user may include one or
more graphical icons corresponding to one or more appli-
cations hosted by third party servers on third party networks
and one or more graphical icons corresponding to one or
more applications hosted on one or more local servers on a
local network of the device.

Depending on the user and the user’s access to various
applications, the interface may comprise any number of
icons corresponding to any number of disparately hosted
applications. In some embodiments, the interface includes
icons corresponding to applications of the host enterprise
served by the servers 106 of the host enterprise. The inter-
face may also include icons corresponding to applications of
the host enterprise that are served by third party servers 106
which are external to the network of the host enterprise. The
third party servers may serve the host enterprise applications
via cloud computing services 2430. In some embodiments,
the interface includes icons corresponding to applications
served by the third party servers, such as, for example,
applications 2305N or 2310. The icons for the third party
disparate applications 2305N/2310 may identify applica-
tions external to the host enterprise and served by any other
enterprise.

The interface provided to the user may include a list of
published applications comprising a graphical icon corre-
sponding to the third party hosted Software as a Service
(SAAS) application. In some embodiments, the interface
includes a list of published applications comprising a graphi-
cal icon corresponding to the third party hosted a Platform
as a Service (PAAS) application. In further embodiments,
the interface includes a list of published applications com-
prising a graphical icon corresponding to the third party
hosted Infrastructure as a Service (IAAS) application. In
some embodiments, the interface includes icons for Citrix
Systems applications, such as XenDesktop or XenServer
applications. In further embodiments, the interface includes
icons for third party applications, such as Facebook appli-
cation, Google mail application, Yahoo mail application,
ITunes application or any other application or service pro-
vided via a network.

The intermediary may obtain the list of published appli-
cations for the user from the application delivery system 190
described herein. The intermediary may obtain the list of
published application for the user from the application
delivery system as described in any embodiments of Section
I and Section J. For example, the publishing tool 1173 of the
content server and/or the publishing server plug-in 1165 may
be used to configure, identify or establish the user’s list of
applications published or available to the user. In another
example, the list of applications may be obtained via the
application delivery store embodiments described in Section
J. The intermediary may obtain the list of published appli-
cation via configuration and policy specified on the inter-
mediary for the user.

At step 2465, the intermediary 200 may receive from the
client a user selection of a disparately hosted application.
The user selection may be in form of a request initiated by

US 9,461,996 B2

119

a single click, a double click or a right/left click of the user
on a graphical icon of the interface. In some embodiments,
the user selection is provided by a request initiated by the
user’s single click, a double click or a right/left click on a
hyperlink or a link corresponding to a particular application.
In some embodiments, the user selects with a mouse a
number of applications and sends a request to select a
plurality of applications from the interface with the single
request. In some embodiments, the user selects a third party
disparate application 2305N or 2310, such as a Google mail,
Facebook, Yahoo mail, etc. In further embodiments, the user
selects a host enterprise application served by a third party
server. In further embodiments, the user selects a host
enterprise application served by a host enterprise server.

At step 2470, the intermediary device may initiate, cause
or the request the execution of the disparately hosted appli-
cation selected by the user. The intermediary device may
communicate or interface with a cloud assess/SSO system
2325 to authenticate or single sign on the user to the selected
application. The intermediary device may communicate or
interface with an enterprise or datacenter server to authen-
ticate the user. The intermediary device may communicate
an instruction, command or request to a server hosted the
application to execute the application. The intermediary
device may comprise, use or communicate with an applica-
tion connector for the selected application to login the user,
establish an application session for the user and/or otherwise
execute a third party hosted application, such as a SaaS/
PaaS/laaS application. The intermediary device may com-
municate an instruction, command or request to the appli-
cation delivery system 190 to execute the application.

In some embodiments, the user’s selection of the appli-
cation from the interface may comprise the instruction,
command or request to the execute the selected application
to a target host or server providing the application. In some
of these embodiments, the request may traverse the inter-
mediary and the intermediary forwards the request to the
intended target or destination. In some of these embodi-
ments, the request may bypass the intermediary and com-
municate directly to the intended target or destination.

The intermediary may communicate to the client 102 the
application selected by the user. In some embodiments, the
selected application is streamed to the client from a third
party server or from a host enterprise server via the inter-
mediary. In other embodiments, the selected third party, or
host enterprise application, such as virtualized application
(e.g., a virtual machine) is delivered to the client via the
intermediary to a virtual environment established on the
client 102. In further embodiments, an application delivery
system delivers via the intermediary to the client 102 the
selected application via an ICA protocol. In some embodi-
ments, an application delivery system delivers via the inter-
mediary to the client 102 using a remote display protocol
(RDP). In yet other embodiments, intermediary device 200
initiates or sets up the delivery of the selected application to
the client 102 and the selected application is delivered to the
client 102 directly from the hosting server, such as the third
party server or the host enterprise server. In the instances in
which the user selects multiple applications from the inter-
face, the intermediary device may deliver to the client 102
from any of the corresponding servers the selected multiple
applications via any variation of streaming, ICA protocol
delivery, RDP delivery, virtual environment delivery or
using any other application delivery technique described
herein. In some embodiments, the intermediary setups a

10

15

20

25

30

35

40

45

50

55

60

65

120

direct server return (DSR) path for the application to be
delivered from a server directly to the client and bypassing
the intermediary.

With the delivery of any disparately hosted application via
the ADC or intermediary of embodiments of the present
solution, the ADC may provide traffic management, access
control, and acceleration to the delivery of such applications.

In view of the systems and methods described herein, a
user may seamlessly gain access to any combination of
application delivery system or enterprise hosted applica-
tions, enterprise applications hosted on a cloud and third
party hosted applications, such as SaaS, PaaS and IaaS
applications (e.g., disparately hosted applications). A single
access user interface may be presented to the user in the
form of a program neighborhood, web interface or applica-
tion delivery stores, such as any of those provided by the
application delivery system. The single access user interface
may enumerate the published list of applications including
any combination of the application delivery system or
enterprise hosted applications, enterprise applications
hosted on a cloud and third party hosted applications, such
as SaaS, PaaS and laaS applications. With a click of a
graphical representation or icon in the access user interface,
the user can launch and have delivered any one of these
disparately hosted applications to the client of the user as if
the application was hosted and server by the enterprise
datacenter and not disparately hosted. As such, any of the
third party hosted applications are delivered to the user
under the same authentication domain and control of the
ADC like it was an enterprise application delivered via the
LAN of the enterprise from the application delivery system
in the datacenter.

We claim:

1. A method of providing a selectable list of disparately

hosted applications, the method comprising:

(a-1) receiving, by a device intermediary to a client and
one or more servers of a host enterprise, a request from
the client of a user of the host enterprise, to access a list
of applications published to the user;

(a-2) including, by the device in the list of published
applications, a first list of one or more applications
hosted by a server of the host enterprise, identified to
the device by the server of the host enterprise via a
program neighborhood interface executing on the
device in accordance with a configuration of the device,
and a third party hosted application served by a remote
third party server of a third party enterprise disparate
from the host enterprise, identified in the configuration
of the device, the program neighborhood interface
configured to limit applications displayed via a pro-
gram neighborhood application executing on the client,
to those for which the user of the client has authoriza-
tion to access;

(b) communicating, by the device to the client via a first
network of the host enterprise, the list of published
applications available to the user for display by the
client via a single user interface of the program neigh-
borhood application, the list of published applications
comprising a plurality of graphical icons corresponding
to a plurality of disparately hosted applications, at least
one graphical icon corresponding to the third party
hosted application among the plurality of disparately
hosted applications, and a second graphical icon cor-
responding to the enterprise application hosted and
served by the server of the host enterprise via the first
network, the third party hosted application served via a

US 9,461,996 B2

121

second network by the remote third party server of the
third party enterprise disparate from the host enterprise;

(c-1) authenticating, by the device, the user via a single set
of authentication credentials for accessing the plurality
of disparately hosted applications;

(c-2) receiving, by the device, a selection comprising a
single click from the user of the at least one graphical
icon corresponding to the third party hosted applica-
tion, via the single user interface of the program
neighborhood application; and

(d) communicating, via the device via the first network to
the client of the user of the host enterprise responsive
to the selection by the user, execution of the third party
hosted application from the remote third party server
via the second network.

2. The method of claim 1, wherein step (b) further
comprises identifying, by the device, applications for the list
of published applications available for access to the user, the
list of published applications comprising one or more
graphical icons corresponding to one or more applications
hosted by third party servers on third party networks and one
or more graphical icons corresponding to one or more
applications hosted on one or more local servers on a local
network of the device.

3. The method of claim 1, wherein step (b) further
comprises enumerating, by the device, all disparately hosted
applications available for access by the user into the list of
published applications, a first application of the list of
published applications comprising the enterprise application
hosted by the host enterprise of the device, a second appli-
cation of the list of published applications comprising an
application of the host enterprise hosted via a cloud com-
puting service and a third application of the list of published
applications comprising the third-party application hosted
by the third-party server.

4. The method of claim 1, wherein step (b) further
comprises providing, by the device, the list of published
applications via a web interface page.

5. The method of claim 1, wherein step (c-2) further
comprises receiving, by the device, the selection from the
user the at least one graphical icon corresponding to the third
party hosted application comprising one of a Software as a
Service (SAAS) application, a Platform as a Service (PAAS)
application or an Infrastructure as a Service (IAAS) appli-
cation.

6. The method of claim 1, wherein step (d) further
comprises automatically performing a login, by the device,
to the third party hosted application on behalf of the user.

7. The method of claim 1, wherein step (d) further
comprises authenticating, by the device, the user to the third
party hosted application using authentication credentials
managed by the device for the user.

8. The method of claim 1, wherein step (d) further
comprises communicating, by the device, execution of the
third party hosted application via one of streaming, a virtu-
alized environment or a remote display protocol.

9. The method of claim 1, further comprising receiving,
by the device, a second selection of a second graphical icon
corresponding to an application hosted by a local server of
the host enterprise of the device; and communicating, by the
device, execution of the selected second application to the
client of the user.

10. The method of claim 1, wherein (b) comprises com-
municating the list of published applications comprising the
at least one graphical icon corresponding to the third party
hosted application, the third party hosted application acces-

5

10

20

25

30

40

45

50

55

122

sible to the user via the single interface in the same way as
the application hosted by the host enterprise.

11. A system for providing a selectable list of disparately
hosted applications, the system comprising:

a device intermediary to a client and one or more servers
of a host enterprise, the device receiving a request from
the client of a user of the host enterprise, to access a list
of applications published to the user and including, to
the list of published applications, a first list of one or
more applications hosted by a server of the host enter-
prise, identified to the device by the server of the host
enterprise via a program neighborhood interface
executing on the device in accordance with a configu-
ration of the device, and a third party hosted application
served by a remote third party server of a third party
enterprise disparate from the host enterprise, identified
in the configuration of the device, the program neigh-
borhood interface configured to limit applications dis-
played via a program neighborhood application execut-
ing on the client, to those for which the user of the
client has authorization to access;

wherein a packet engine of the device communicates via
a first network of the host enterprise the list of pub-
lished applications available to the user for display by
the client via a single user interface of the program
neighborhood application, the list of published appli-
cations comprising a plurality of graphical icons cor-
responding to a plurality of disparately hosted applica-
tions, at least one graphical icon corresponding to the
third party hosted application among the plurality of
disparately hosted applications, and a second graphical
icon corresponding to the enterprise application hosted
and served by the server of the host enterprise via the
first network, the third party hosted application served
via a second network by the remote third party server
of the third party enterprise disparate from the host
enterprise, authenticates the user via a single set of
authentication credentials for accessing the plurality of
disparately hosted applications, and receives a selection
comprising a single click from the user of the at least
one graphical icon corresponding to the third party
hosted application, via the single user interface of the
program neighborhood application; and

wherein execution of the third-party hosed application
from the remote third party server via the second
network is communicated via the device via the first
network to the client of the user of the host enterprise
responsive to the selection by the user.

12. The system of claim 11, wherein the device identifies
applications for the list of applications available for access
to the user, the list of published applications comprising one
or more graphical icons corresponding to one or more
applications hosted by third party servers on third party
networks and one or more graphical icons corresponding to
one or more applications hosted on one or more local servers
on a local network of the device.

13. The system of claim 11, wherein the device enumer-
ates all disparately hosted applications available for access
by the user into the list of published applications, a first
application of the list of published applications comprising
the enterprise application hosted by the host enterprise of the
device, a second application of the list of published appli-
cations comprising an application of the host enterprise
hosted via a cloud computing service and a third application
of the list of published applications comprising the third-
party application hosted by the third-party server.

US 9,461,996 B2

123

14. The system of claim 11, wherein the device provides
the list of published applications via a web interface page.

15. The system of claim 11, wherein the device receives
from the user the selection of at least one graphical icon
corresponding to the third party hosted application compris-
ing one of a Software as a Service (SAAS) application, a
Platform as a Service (PAAS) application or an Infrastruc-
ture as a Service (IAAS) application.

16. The system of claim 11, wherein the device automati-
cally performs a login to the third party hosted application
on behalf of the user.

17. The system of claim 11, wherein the device authen-
ticates the user to the third party hosted application using
authentication credentials managed by the device for the
user.

18. The system of claim 11, wherein the device commu-
nicates execution of the third party hosted application via
one of streaming, a virtualized environment or a remote
display protocol.

19. The system of claim 11, wherein the device receives
a second selection of a second graphical icon corresponding
to an application hosted by a local server of the host
enterprise of the device and communicates execution of the
selected second application to the client of the user.

#* #* #* #* #*

10

15

20

25

124

